
Scaling Deep Learning Computation over the
Inter-core Connected Intelligence Processor
Yiqi Liu

yiqiliu2@illinois.edu
UIUC

Yuqi Xue
yuqixue2@illinois.edu

UIUC

Yu Cheng
yu.cheng@pku.edu.cn
Microsoft Research

Lingxiao Ma
lingxiao.ma@microsoft.com

Microsoft Research

Ziming Miao
ziming.miao@microsoft.com

Microsoft Research

Jilong Xue
jxue@microsoft.com
Microsoft Research

Jian Huang
jianh@illinois.edu

UIUC

Abstract
As AI chips incorporate numerous parallelized cores to scale
deep learning (DL) computing, chips like Graphcore IPU en-
able high-bandwidth and low-latency inter-core links. They
allow each core to directly access other cores’ scratchpad
memory, which enables new parallel computing paradigms.
However, without proper support for the inter-core con-
nections in current DL compilers, it is hard to exploit the
benefits of this new architecture. We present T10, the first DL
compiler to exploit the inter-core bandwidth and distributed
on-chip memory on AI chips. To formulate the computation
and communication patterns of tensor operators in the new
architecture, T10 introduces a distributed tensor abstraction
rTensor. T10 maps a DNN model to execution plans with
a compute-shift pattern, by partitioning DNN computation
into sub-operators and mapping them to cores, so that the
cores can exchange data following predictable patterns. T10
alleviates unnecessary inter-core communications, makes
globally optimized trade-offs between on-chip memory us-
age and inter-core communication overhead, and selects the
best execution plan from a vast optimization space.

1 Background and Motivation
To meet the ever-increasing compute demand of deep learn-
ing (DL) workloads, various AI chips or intelligence proces-
sors have been developed [4, 8, 9]. Typically, an AI chip em-
ploys numerous cores to provide high compute throughput.
Each core has a small SRAM as its local scratchpad memory.
To exploit the parallelism across cores, DL compilers parti-
tion the computation into multiple pieces. To synchronize
data across cores, all cores share a global memory backed by
a high-bandwidth off-chip memory (e.g., the HBM).
1.1 Inter-core Connected Intelligence Processor
Unfortunately, the global memory bandwidth growth gradu-
ally lags behind the fast growth of computing performance.
Instead of fetching all data from the global memory, inter-
core links allow cores to directly reuse data from each other,
enabling more on-chip data reuse. For example, unlike the
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TPU [3] and GPU [9] architectures shown in Figure 1, the
Graphcore IPU [5] enables a 624KB local memory on each
core and allows each core to access another’s local memory
at 5.5GB/s. The 1,472 cores per chip yield a total on-chip ca-
pacity of 896MB and an all-to-all transfer bandwidth of 8TB/s,
much higher than the HBM bandwidth (1.94TB/s on an A100
GPU). The aggregated capacity and bandwidth can further
scale when future technology fits more cores into one chip,
making it a promising approach for breaking the memory
wall. Thus, inter-core links are employed in many emerg-
ing accelerators, including Graphcore IPU [5], SambaNova
SN10 [10], CerebrasWSE [6], and Tenstorrent Grayskull [12].

1.2 Inefficiency of Existing Approaches
However, this new architecture makes executing DL models
more complex. In the traditional global shared-memory ar-
chitecture, programs access all data from a unified memory,
so compilers only need to focus on partitioning computation
among cores. In contrast, the on-chip inter-core connections
enable a distributed on-chip memory architecture from pro-
grammers’ perspective, which requires compilers to coordi-
nate the computation partitioning, data placement, and inter-
core communication. Simply employing existing compiler
techniques causes unnecessary inter-core communication
and data duplication in the precious on-chip memory.

To support inter-core connected AI chips, existing compil-
ers [15, 16] and libraries [2] mimic a shared memory for all
cores by reserving a portion of local memory in each core
and abstracting them as a “virtual global memory” (VGM),
as shown in Figure 2 (a). By default, all tensors used by the
operators from a DL model, including persistent weights and
temporary activations, are placed in the VGM. During exe-
cution, the active operator (i.e., currently running operator)
is partitioned into sub-operators, each running on one core.
Tensors of the idle operators (i.e., operators stored on-chip
but not currently running) are unused in the VGM. To exe-
cute a sub-operator, each core retrieves data from VGM to its
local “sub-operator” memory (shaded in green in Figure 2),
performs computation locally, and stores the result back to
VGM. We define this as a “load-compute-store” paradigm.
Inefficient inter-core communications. VGM introduces
high inter-core communication overheads. First, accessing
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Figure 1. System architecture of TPU (left), GPU (middle), and IPU (right) chips. This paper focuses on a single IPU chip.

Sub-
operator

Sub-
operator

Sub-
operator

Core 0 Core 1 Core N
Sub-

operator
Sub-

operator
Sub-

operator

Vi
rt

ua
l G

lo
ba

l
M

em
or

y

...
Core 0 Core 1 Core N

...
Idle

Operators
Idle

Operators
Idle

Operators

(a) Load-Compute-Store (c) Compute-Shift

Idle Operators

Active Operator

Ratio 29.2% 22.0% 60.4% 138.5%

Active
Operator 19.6KB 43.4KB 59.6KB 352.3KB

Sub-
operator 67.0KB 197.2KB 98.7KB 254.3KB

(b) Memory Footprint Per-core when Using Load-Compute-Store

Bert-BS8
MatMul

ViT-BS128
MatMul

ResNet-BS128
Convolution

NeRF-BS1
MatMul

179.8%

143.5KB

79.8KB

OPT13B-BS1
MatMul

O
n-

ch
ip

 M
em

or
y

Figure 2. A comparison of the conventional load-compute-store (a) vs. our compute-shift (c) style execution. (b) shows the
per-core memory footprint of representative operators when running DNN models on IPU using VGM. Ratio is the potential
increase in sub-operator size by removing VGM. The result of OPT13B [14] comes from profiling one of its layers on IPU.

tensor data from VGM forces some cores to issue or serve
more data accesses than others. As each tensor partition is
stored in one core but is usually used by multiple cores for
computation, some cores can obtain needed partitions from
their localmemory, while other coresmust remotely fetch the
partitions from peers. Thus, the execution is bottlenecked
by cores that access remotely, which leads to imbalanced
memory accesses. Second, to store a tensor using the VGM, as
shown by the red “Active Operator” boxes in Figure 2 (a), we
split it into small pieces across multiple cores. To retrieve a
complete tensor, a core must fetch each piece from a different
core, requiring it to communicate with multiple cores. This
leads to redundant inter-core communications.
Inefficient use of on-chip memory. The VGM uses the
on-chip memory capacity inefficiently. As shown in Figure 2
(a), each sub-operator of the currently active operator loads
required data from the VGM to its local memory, which dupli-
cates the data in both memory spaces. To host the duplicated
data, VGM reserves memory space on each core, as shown
by the active operator region in Figure 2 (a). This leaves less
free on-chip memory, restricts each core to accommodate a
smaller sub-operator, and results in low compute intensity.
With less data reuse inside a core, higher data transfer vol-
ume is required for performing the same computation. We
quantify the storage overhead of VGM for representative op-
erators in Figure 2 (b). By removing the VGM (i.e., merging
the active operator region into the sub-operator region) in
Figure 2 (c), we can increase sub-operator size by 22%–180%.

2 Core Idea of T10
To eliminate the excessive memory footprint and redundant
inter-core communications of VGM, we map the DNN com-
putation to a compute-shift pattern. In each step, each core
independently computes a sub-task with data received from
its upstream neighbors and shifts the data to its downstream.
The feasibility of this approach for general DNNs comes from
this observation: most DNN operators can be divided into
regular computation tasks, which load and produce consec-
utive data tiles of the input and output tensors, respectively.

We show an example that maps a MatMul operator to two
cores in Figure 3 (a). We first partition it along dimension𝑚
onto two cores in Figure 3 (b). By default, both cores hold a
copy of the weight tensor, incurring memory capacity over-
head. To reduce memory footprint, in Figure 3 (c), we further
split the weight tensor along dimension 𝑛 into two parts and
place each part on one of the cores. Then, the computation
must be conducted in two steps, as each core holds half of the
weight tensor and performs half of its computation per step.
Between computation steps, each core circularly shifts its
partition to the next core, forming a shift ring of two cores.
The compute-shift pattern avoids the inefficiencies of

VGM. First, each part of the shared tensor is stored in at
least one core at any time, which no longer needs a global
memory. Second, by circularly shifting tensors across cores,
the communication volume is evenly distributed across the
inter-core connections. Third, each core only needs to com-
municate with one other core to shift each tensor at each step,
which avoids redundant communications to many cores.

To find the best execution plan with the compute-shift
pattern, we exploit the tradeoff between memory footprint and
communication overhead. For example, both Figure 3 (b) and
(c) show valid plans. Plan (b) finishes computation in one
step without inter-core communication, but it has a higher
memory footprint. Plan (c) has less memory footprint but
incurs more communication overhead. Furthermore, given
limited inter-core bandwidth and on-chip capacity, we must
also holistically tradeoff among multiple operators on the
chip to derive an optimized end-to-end execution plan.

3 System Design of T10
We introduce T10, a compiler that optimizes end-to-end DNN
model execution on an inter-core connected DL processor.
We present the design overview of T10 in Figure 4.

3.1 rTensor: A New Tensor Abstraction
Tomap each tensor onto the distributed on-chip memory and
shift the partitioned sub-tensors across cores, T10 introduces
a tensor abstraction called RotatingTensor (rTensor). Besides
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Figure 3. An example that maps a MatMul operator to two cores with the compute-shift style execution. Both (b) and (c) are
valid compute-shift execution plans, but with different tradeoffs between memory footprint and communication overhead.
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Figure 4. System overview of T10.

tensor shape and data type, rTensor also defines how each
tensor is partitioned, mapped, and shifted on multiple cores.

First, T10 partitions the computation of an operator onto
multiple cores. Based on data dependency, the computation
partitioning will imply how each of its input/output ten-
sors is partitioned. This gives a spatial partition factor (𝒇𝒔 ),
which splits a tensor into sub-tensors. Second, each sub-
tensor may be shared by many cores, so we specify how the
sub-tensor is further partitioned among the cores using a
temporal partition factor (𝒇𝒕 ). Third, we specify how the par-
titions of a sub-tensor are circularly shifted among the cores
using the rotating pace (rp), so we can align the data shifting
with computation. Altogether, a set of rTensors of an opera-
tor defines a compute-shift execution plan. The numerous
possible rTensor configurations of an operator generate a
combinatorial optimization space of execution plans.
3.2 Compute-Shift Execution Plan
Using rTensor, T10 organizes the computation of a DNN
operator into a compute-shift pattern, where the operator’s
computation and tensors are partitioned to individual cores
and their local memories. The entire computation involves
multiple compute-shift steps until each tensor has been
shifted across all cores. Each compute step is defined as
a sub-task. In each compute-shift step, each core computes
a sub-task and shifts local tensors to its neighbors.
To represent an operator’s computation, T10 uses tensor

expression [1, 11, 13, 15, 16] to define how each output ten-
sor value is computed from the input values. For example, a
matrix multiplication of tensors𝐴 and 𝐵 into𝐶 is defined as

𝐶 [𝑚,𝑛] += 𝐴[𝑚,𝑘] ∗ 𝐵 [𝑘, 𝑛], (1)
where 𝑚, 𝑛, and 𝑘 are axes to index the elements in each
tensor. Equation (1) indicates that any value in 𝐶 indexed by
𝑚 and 𝑛 (i.e., 𝐶 [𝑚,𝑛]) is computed by summing 𝐴[𝑚,𝑘] ∗
𝐵 [𝑘, 𝑛] over all possible indices 𝑘 . T10 supports all common
operators that can be represented by tensor expressions.

Tomap an operator to interconnected cores, T10 first parti-
tions it into parallel sub-operators along all axes in its tensor
expression, using an operator partition factor (𝑭𝒐𝒑). T10 then

uses 𝐹𝑜𝑝 to derive the 𝑓𝑠 for each tensor, following the data
dependencies in tensor expression. If a tensor’s dimensions
do not include some axis in 𝐹𝑜𝑝 , each sliced sub-tensor is
required by multiple sub-operators along the missing axis.
After the spatial factor determines the number of cores that
will share a sub-tensor, the temporal factor can specify how
the sub-tensor is split and rotated across these cores.

For each operator, each set of factors can map its computa-
tion into a compute-shift execution plan. In each step, each
sub-operator computes a sub-task partitioned by 𝐹𝑜𝑝 and rp
along each axis. The sub-operator iterates all its sub-tasks by
nested-looping through all rotating axes. Between sub-tasks,
an rTensor is rotated along the currently iterating axis.
3.3 Intra-operator and Inter-operator Trade-off
For each operator, there could be a vast number of execu-
tion plans involving different spatial and temporal partition
factors and rotating paces. Moreover, an end-to-end model
consists of numerous operators, creating a substantial combi-
natorial optimization space. T10 defines a two-level trade-off
space between execution time and memory consumption.
Intra-operator trade-off.When determining each opera-
tor’s execution plan, we can trade memory space for execu-
tion efficiency by specifying a smaller temporal partitioning
factor. This can reduce communication costs by reducing the
hops in the rotation loop, while at the cost of using more
memory to hold duplicated tensors. To efficiently tradeoff
among numerous plans, T10 enables a cost model to predict
each plan’s execution time. Thus, T10 can quickly examine
each plan and choose the best candidates that sit on the
Pareto optimal trade-off curve, where each plan either runs
faster than any other plans with the same or less memory
footprint or uses less memory than any others with the same
or lower execution time. T10 also employs search constraints
to reduce the number of plans to be examined.
Inter-operator trade-off.We can tradeoff between mem-
ory space and execution time across all operators holistically
when deciding the end-to-end model execution plan. To exe-
cute a DNN, T10 fits multiple operators in the on-chip mem-
ory, so adjacent operators can reuse intermediate data on
chip. To start tradeoff, T10 assumes that all operators execute
using the plans with the minimum memory footprint. As
different operators have different memory-latency trade-offs,
T10 iteratively allocates more memory to the operator with
the highest memory-cost efficiency (i.e., reducing the most
execution time while incurring the same memory footprint
overhead), in each step. The tradeoff stops when all on-chip
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Figure 5. Inference latency of DNNmodels for various batch
sizes. “✖” indicates the program cannot fit into an IPU chip.
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Figure 6. Data transfer overhead of executing various DNN
models with different batch sizes on IPU.

memories are allocated to the operators, where T10 obtains
an end-to-end plan with optimized total execution time.

4 Performance of T10
We use T10 to generate end-to-end execution plans for DNNs
of different types and sizes, including CNNs (ResNet), Trans-
formers (BERT andViT), and fully-connected networks (NeRF).
We execute themodels on a Graphcore IPUMK2 chip [5], and
compare T10 with Graphcore’s official PopART library [2]
and a VGM-based DL compiler, Roller [16]. More detailed
analyses are presented in our full paper1 [7].
End-to-end performance. In Figure 5, while Roller outper-
forms PopART by 1.38× on average by using appropriate
sub-operator sizes for each operator, T10 further achieves
1.69× end-to-end inference latency improvement on average
than Roller by globally optimizing the compute-shift execu-
tion. Also, T10 supports larger batch sizes and models by
saving the on-chip memory space, while other baselines fail
to execute the models as the batch size gets larger.
Inference latency breakdown.We break down the compute
time and inter-core data transfer time of Roller and T10
in Figure 6. Compared with Roller, T10 reduces the inter-
core communication overhead from 50%–74% to only 8%–
43%. For most models, while large operators like MatMul
intrinsically incur significant inter-core data sharing, T10
reduces the overhead by smartly shifting the shared tensor
data. For ResNet and NeRF, T10 minimizes the inter-core
movements of their large input activation tensors, by sharing
the smaller convolution kernels or model weights across the
cores, enabling even lower communication overhead.
T10 compilation time. Figure 7 shows the compilation time
of T10 for different models and batch sizes. T10 finishes
compilation in a few hours for most DNN inference pro-
grams (tested with AMD Ryzen 7950X3D). As T10 exploits
the predictability of the hardware architecture with the cost
model and search constraints (§3.3), it avoids the expensive
profiling for tuning each operator (e.g., Ansor [15]).

1Our full paper will appear in the proceedings of the 30th Symposium on
Operating Systems Principles (SOSP’24).
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Figure 8. Candidate execution plans of representative oper-
ators (e.g., Figure (a) is a convolution operator from ResNet
with batch size 32). Stars are optimal execution plans found
by T10. Triangles are the plans used by PopART and Roller,
respectively. PopART fails to execute NeRF in Figure (d).

Intra-operator trade-off space. Figure 8 shows the set of
optimal execution plans found by T10 for representative
operators compared to the plans used by PopART and Roller.
For most operators, T10 finds a plan that is both faster and
more memory efficient than PopART. Roller always tries to
find the fastest plan that uses the most per-core memory.
However, Roller’s maximum memory usage is limited due to
the VGM region (Figure 2). By removing VGM, T10 allows
larger active memories and faster plans. By maintaining a set
of Pareto-optimal plans for each operator, T10 can trade-off
among all operators for the best end-to-end performance.

5 Conclusion and Future Work
We present T10, an end-to-end deep learning compiler for
inter-core connected intelligence processors. To best utilize
the IPU hardware, T10 enables the compute-shift computing
paradigm, the tradeoff betweenmemory and communication,
and the cost-aware operator partitioning and scheduling. As
future work, we will extend T10 to optimize the IPU with
off-chip HBM, which requires us to mitigate new hardware
resource contentions on the memory and interconnect.
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