
Thallus: An RDMA-based Columnar Data Transport
Protocol

Jayjeet Chakraborty
jayjeetc@ucsc.edu
UC Santa Cruz

Santa Cruz, CA, USA

Matthieu Dorier
mdorier@anl.gov

Argonne National Laboratory
Lemont, IL, USA

Philip Carns
carns@mcs.anl.gov

Argonne National Laboratory
Lemont, IL, USA

Robert Ross
rross@mcs.anl.gov

Argonne National Laboratory
Lemont, IL, USA

Carlos Maltzahn
carlosm@ucsc.edu
UC Santa Cruz

Santa Cruz, CA, USA

Heiner Litz
hlitz@ucsc.edu
UC Santa Cruz

Santa Cruz, CA, USA

Abstract
The volume of data generated and stored in contemporary
global data centers is experiencing exponential growth. This
rapid data growth necessitates e�cient processing and anal-
ysis to extract valuable business insights. In distributed data
processing systems, data undergoes exchanges between the
compute servers that contribute signi�cantly to the total
data processing duration in adequately large clusters, neces-
sitating e�cient data transport protocols.
Traditionally, data transport frameworks such as JDBC

and ODBC have used TCP/IP-over-Ethernet as their under-
lying network protocol. Such frameworks require serializing
the data into a single contiguous bu�er before handing it
o� to the network card, primarily due to the requirement
of contiguous data in TCP/IP. In OLAP use cases, this seri-
alization process is costly for columnar data batches as it
involves numerous memory copies that hurt data transport
duration and overall data processing performance. We study
the serialization overhead in the context of a widely-used
columnar data format, Apache Arrow, and propose lever-
aging RDMA to transport Arrow data over In�niband in a
zero-copy manner. We design and implement Thallus, an
RDMA-based columnar data transport protocol for Apache
Arrow based on the Thallium framework from the Mochi
ecosystem, compare it with a purely Thallium RPC-based
implementation, and show substantial performance improve-
ments can be achieved by using RDMA for columnar data
transport.

1 Introduction
The past decade has seen a surge in data processing tools
and technologies due to the exponential growth of data from
IoT devices, sensors, social networks, and �nancial institu-
tions. Modern data processing systems such as Dask [11],
Spark [16], and BigQuery [15] exchange vast amounts of data
over the internal data center network [13], especially during

The 2nd Workshop on Hot Topics in System Infrastructure (HotInfra’24), co-
located with SOSP’24, November 3, 2024, Austin, TX, USA

the re-partition and shu�e stages while executing queries.
Since these exchanges contribute signi�cantly to the query
execution duration, they must exhibit optimal performance.
Unfortunately, these data exchanges su�er from serial-

ization overhead, where the in-memory data needs to be
serialized into a contiguous representation for the data trans-
port framework to be able to carry it over the wire [10]. This
is even the case for columnar in-memory formats such as
Apache Arrow [4], which, although zero-copy within the
same host, requires expensive serialization when transfer-
ring between hosts. This serialization requirement arises
from using TCP/IP-based data transport frameworks since
using TCP/IP requires the data to be contiguous before feed-
ing into the network [3]. In the past decade, I/O became faster,
with disk I/O reaching bandwidths of 10-15GB/s with PCIe
Gen5 NVMe SSDs and network I/O reaching up to 800 Gbps
with the adoption of Terabit Ethernet. With such advance-
ments in I/O performance, data serialization has become a
signi�cant source of overhead in network-bound data center
applications.

One solution to this problem is using RDMA [5] to trans-
port columnar data bu�ers between the machines’ memories
directly. Although there has been previous work studying
the use of RDMA for accelerating network applications and
columnar databases [6] [2], most of it is either based on re-
search prototypes or used internally in proprietary systems,
and none is open-sourced. To our knowledge, no work has
been done to explore transporting widely-used open-source
in-memory columnar data formats such as Apache Arrow
over RDMA.
This work studies the serialization overhead incurred

when transporting Apache Arrow data over a TCP/IP-based
RPC interface implemented using the Thallium [14] frame-
work from the Mochi [12] ecosystem. We choose Apache
Arrow because it is one of the most widely used columnar
in-memory data formats today, and almost all major dis-
tributed data processing systems have either adopted it or
are working actively to support it. We design and implement
Thallus, a data transport protocol based on RDMA to trans-
port Apache Arrow data, leveraging the Thallium framework.

HotInfra ’24, November 3, 2024, Austin, TX, USA Chakraborty et al.

We demonstrate that using Thallus to transport columnar
data results in up to 5.5x data transport performance im-
provement and up to 2.5x faster query execution over plain
Thallium RPCs.

2 Serialization Overhead in Apache Arrow
To establish our baseline, we built a client-server application
that executes SQL queries in the server usingDuckDB [9] and
transports result Arrow record batches over plain Thallium
RPCs. Arrow record batches must be serialized into a con-
tiguous bu�er to send them through the RPC response. This
serialization process incurs copying Arrow column bu�ers
and laying them out contiguously. We execute queries to
select all the columns in the dataset and observe that about
30% of the RPC duration is spent in serializing a record batch,
and only about 0.0004% of the duration is consumed in dese-
rialization, as it is a zero-copy operation in Apache Arrow.
This work aims to remove the serialization overhead by lever-
aging RDMA for Arrow data transport.

3 Thallus: Design and Implementation

Text

DuckDB
Engine

ServerClient

do_rdma

init_scan

iterate

init_scan() RPC

Result schema and Query
handle

Reader Map

iterate() RPC

do_rdma() RPC

RDMA Pull

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4

Data
Buffer

A

Offset
Buffer

A

Null
Buffer

A

Data
Buffer

B

Offset
Buffer

B

Thallium Bulk...

Figure 1. Control �ow diagram showing the high-level op-
eration of Thallus.

Using the Thallium framework, we design and implement
Thallus, an RDMA-based data transport protocol for Apache
Arrow. Our protocol has 2 stages: First, we initiate a query ex-
ecution using a query execution or database engine; Second,
we transport the query results batch by batch to the client.
We use the Thallium RPC interface to exchange metadata
and control information while using the Thallium RDMA
interface to transport data bu�ers.

Upon connecting to a server, the client invokes an init_scan
procedure on the server with a SQL query and a dataset path
as arguments. Inside this procedure, a query execution ses-
sion is instantiated, and a handle to a result cursor is returned
to the client as a response. The client then uses this handle
to invoke an iterate procedure on the server, which iterates
over the query cursor, producing results batch by batch, and
for every batch, invokes a do_rdma procedure on the client,
that pulls the batches from the server to the client. After all
the batches are pulled into the client, a �nalize procedure is

invoked to clean up resources and stop the server. Figure 1
summarizes the high-level operation of Thallus in an imple-
mentation with DuckDB as the query execution backend.
Next, we discuss each of the procedures mentioned above in
detail.

3.0.1 Server: init_scan. This procedure takes a SQL query
and a dataset path as input arguments. The procedure starts
execution by instantiating a DuckDBEngine instance, a class
containing methods for creating and querying a table in
DuckDB. We can use a similar interface to leverage any
other Arrow-native query execution engine, such as Po-
lars [1] and Velox [7]. Then, a view is created over the dataset,
the SQL query is parsed, and an optimized physical plan is
generated for execution. Upon initiating the query execu-
tion, DuckDB returns a query cursor instance. Arrow pro-
vides a RecordBatchReader interface for streaming access
to Arrow record batches. We extend this interface to create
a DuckDBRecordBatchReader interface that, upon every it-
eration, uses the DuckDB query cursor to generate DuckDB
data chunks and converts them to equivalent Arrow record
batches. We achieve this conversion in a zero-copy manner
using the Arrow C Data Interface [8]. Finally, we store a
pointer to this reader instance in a map, which we refer to
as the reader map, using a unique UUID, read the result’s
schema from the reader instance, and send both back to the
client as a response.

3.0.2 Server: iterate. This procedure is used to iterate over
the DuckDBRecordBatchReader and produce result Arrow
record batches. It takes the record batch reader UUID as its
only input argument to identify a particular query execution
instance in a multi-tenant environment. It starts execution
by looking up the UUID in the reader map to �nd the reader
instance for the client. It then iterates over the reader to
produce result Arrow record batches, that are sent to the
client over RDMA.

For the RDMA operations, we use the Thallium "bulk" in-
terface, as it provides access to remote memory regions. The
users must allocate a list of segments, where each segment
points to a distinct memory region. These segments are then
prepared for remote reads and write through an "expose"
operation, which generates a bulk handle. The bulk handle
is a descriptor for an RDMA-ready pinned remote memory
region that can be serialized and passed around through
RPC arguments and responses and read for accessing remote
memory regions.

In Apache Arrow, a record batch is a collection of columns,
where each column is composed of 3 bu�ers representing
the data values, o�sets, and null masks. We allocate 3x the
number of segments as there are columns and for every 8
th column, we map its data, o�set, and null bu�er to the
38 th, 38 + 1 th, and 38 + 2 th segment, respectively. While
mapping the bu�ers to the segments, we keep storing the
sizes of each of the data, o�set, and null bu�ers in 3 separate

Thallus: An RDMA-based Columnar Data Transport Protocol HotInfra ’24, November 3, 2024, Austin, TX, USA

vectors. We expose these segments as a read-only Thallium
bulk and invoke the client-side do_rdma procedure with the
bulk handle, the bu�er sizes vectors, and the number of rows
in the batch. The bu�er size vectors must be shipped to the
client for it to allocate a similar layout of bu�ers as on the
server to pull the server-side bu�ers into the client-side ones
in a one-to-one manner. When the reader is exhausted and
no more batches can be produced, the procedure returns.

3.0.3 Server: �nalize. The �nalize procedure is invoked
after the client has �nished pulling all the batches from the
server and needs to terminate the data transport operation.
This procedure frees the allocated bu�ers and the reader map
and �nalizes the Thallium engine.

3.0.4 Client: do_rdma. This procedure pulls the Arrow
record batches from the server to the client. It is invoked by
the server-side iterate procedure with the number of rows,
vectors of bu�er sizes, and the remote bulk handle as argu-
ments. It then uses this information to allocate bu�ers for the
client to store data fetched from the server and exposes these
bu�ers as a write-only local bulk. It then pulls the remote
bulk into the local bulk using RDMA. The bulk pulling is a
scatter-gather operation where the server-side bu�ers are
fetched into the corresponding client-side bu�ers. Once all
the bu�ers are brought into the client, they are associated
with bu�er sizes and data types (already available on the
client) to instantiate column structures. These column struc-
tures are then wrapped with the result schema to create an
Arrow record batch. The record batches are then written to
an output stream, such as a parquet �le.

4 Evaluation
We benchmark Thallus by executing SQL queries that gen-
erate result sets of di�erent sizes and use a pure Thallium
RPC-based implementation as our baseline. We measure the
transport and end-to-end query execution duration using
Thallus and compare it with our baseline. We measured the
transport duration only by eagerly collecting all the results
in the server memory �rst and then letting the client read
them.

As shown in Figure 2 and Figure 3, we observe that Thal-
lus is up to 5.5x faster than Thallium RPC in data transport
durations and achieves up to 2.5x performance gain in end-
to-end query execution duration. As can be seen from both
�gures, the relative performance gain of Thallus over Thal-
lium RPC diminishes with the reduction in the size of the
result set. This is because when the batch size transferred
reduces, the constant overheads of doing RDMA, such as
bu�er allocation and memory pinning, become signi�cant.

5 Conclusion
In this paper, we explore using RDMA to accelerate the trans-
port of columnar data in distributed data processing systems.

Figure 2. Comparison of data transport duration using Thal-
lus versus Thallium RPC in column selectivity experiments.

Figure 3. Comparison of query execution duration using
Thallus versus Thallium RPC in column selectivity experi-
ments.

We begin by measuring the overhead caused by the expen-
sive serialization of Apache Arrow data when transported
over the wire using a traditional TCP/IP-based RPC frame-
work. To tackle the serialization overhead, we design and
implement Thallus, an RDMA-based columnar data trans-
port protocol using the Thallium framework from the Mochi
ecosystem to transport Apache Arrow data over In�niband.
Internally, Thallus uses RPCs for control operations and
RDMA for data operations. We structure our implementa-
tion as a client-server model where queries are executed in
a DuckDB instance running on the server, and results are
sent back to the client using Thallus. We benchmark Thallus
against a pure RPC-based implementation, which was also
written using the Thallium framework. Thallus exhibits up
to 5.5x improvement in data transport performance and up
to 2.5x improvement in end-to-end query execution perfor-
mance over TCP/IP-based Thallium RPCs on OLAP-style
columnar workloads. Our studies show that RDMA can be a
viable and more performant alternative to TCP/IP for data
transport in modern data processing applications.

HotInfra ’24, November 3, 2024, Austin, TX, USA Chakraborty et al.

References
[1] The Polars authors. 2023. Polars: Lightning-fast DataFrame library for

Rust and Python. Polars. h�ps://www.pola.rs
[2] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Koss-

mann. 2015. Rack-scale in-memory join processing using RDMA.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. 1463–1475.

[3] P Camarda, F Pipio, and G Piscitelli. 1999. Performance evaluation
of TCP/IP protocol implementations in end systems. IEE Proceedings-
Computers and Digital Techniques 146, 1 (1999), 32–40.

[4] Apache Software Foundation. 2023. Apache Arrow. h�ps://arrow.
apache.org

[5] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design
guidelines for high performance {RDMA} systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16). 437–450.

[6] Feilong Liu, Lingyan Yin, and Spyros Blanas. 2019. Design and evalua-
tion of an RDMA-aware data shu�ing operator for parallel database
systems. ACM Transactions on Database Systems (TODS) 44, 4 (2019),
1–45.

[7] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith
Sakka, Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022.
Velox: Meta’s Uni�ed Execution Engine. Proc. VLDB Endow. 15, 12 (aug
2022), 3372–3384. h�ps://doi.org/10.14778/3554821.3554829

[8] Antoine Pitrou. 2020. Introducing the Apache Arrow C Data Inter-
face. h�ps://arrow.apache.org/blog/2020/05/03/introducing-arrow-c-
data-interface/

[9] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embed-
dable Analytical Database. In Proceedings of the 2019 International

Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA,
1981–1984. h�ps://doi.org/10.1145/3299869.3320212

[10] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang. 2021.
Breakfast of champions: towards zero-copy serialization with NIC
scatter-gather. In Proceedings of theWorkshop onHot Topics in Operating
Systems. 199–205.

[11] Matthew Rocklin et al. 2015. Dask: Parallel computation with blocked
algorithms and task scheduling. In Proceedings of the 14th python in
science conference, Vol. 130. SciPy Austin, TX, 136.

[12] Robert B Ross, George Amvrosiadis, Philip Carns, Charles D Cranor,
Matthieu Dorier, Kevin Harms, Greg Ganger, Garth Gibson, Samuel K
Gutierrez, Robert Latham, et al. 2020. Mochi: Composing data services
for high-performance computing environments. Journal of Computer
Science and Technology 35 (2020), 121–144.

[13] Patrick Stuedi, Animesh Trivedi, Jonas Pfe�erle, Radu Stoica, Bernard
Metzler, Nikolas Ioannou, and Ioannis Koltsidas. 2017. Crail: A High-
Performance I/O Architecture for Distributed Data Processing. IEEE
Data Eng. Bull. 40, 1 (2017), 38–49.

[14] Thallium. [n. d.]. Thallium. h�ps://mochi.readthedocs.io/en/latest/
thallium.html

[15] Jordan Tigani and Siddartha Naidu. 2014. Google bigquery analytics.
John Wiley & Sons.

[16] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. 2016. Apache Spark: A Uni�ed En-
gine for Big Data Processing. Commun. ACM 59, 11 (oct 2016), 56–65.
h�ps://doi.org/10.1145/2934664

https://www.pola.rs
https://arrow.apache.org
https://arrow.apache.org
https://doi.org/10.14778/3554821.3554829
https://arrow.apache.org/blog/2020/05/03/introducing-arrow-c-data-interface/
https://arrow.apache.org/blog/2020/05/03/introducing-arrow-c-data-interface/
https://doi.org/10.1145/3299869.3320212
https://mochi.readthedocs.io/en/latest/thallium.html
https://mochi.readthedocs.io/en/latest/thallium.html
https://doi.org/10.1145/2934664

