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1 Introduction
Recent advancements in AI, driven by large models like
ChatGPT [18] and SORA [19], have led to significant com-
putational challenges. Scaling these models often requires
multi-GPU or multi-node systems [2, 14], utilizing paral-
lelization strategies like tensor parallelism [25] to handle the
computational load. For example, the Llama 3.1-405B model
training uses 16,000 H100 GPUs [16]. However, distributed
computation introduces communication as a major bottle-
neck, accounting for up to 80% of the execution time, as
seen with the Llama 2-7B model [1]. As demonstrated in [3],
scaling the Llama 2-13B [27] training from 8 to 1,024 GPUs
drastically reduces Model FLOPs Utilization (MFU) from 47%
to 4% due to communication overhead. This highlights a key
issue: despite advancements in hardware capabilities, the
hardware (particularly GPUs), often remains underutilized
due to the introduced communication overhead.
To increase the MFU, previous studies have explored the

potential of pipelining computation with communication [20,
22, 28, 30] or data loading [9] to boost hardware utilization.
However, these strategies mainly focus on overlapping com-
putation operators with independent communication oper-
ators. If dependencies exist, for example, in the inference
phase, both computation and communication are on the crit-
ical path, where the inter-operator overlapping is unfeasible.
Recognizing this opportunity, we introduce DistFuse, a

system that facilitates fine-grained overlapping, even in the
presence of dependencies. At its core, DistFuse aims to co-
ordinate computation and communication such that GPU
initiates communication as soon as a part of the data is ready
instead of waiting for the entire data.
We conduct a proof-of-concept experiment to show the

performance gain by applying DistFuse with Llama 3-70B’s
inference on a single node that can hide up to 44.3% com-
munication latency. Our current prototype focuses on LLM
tasks, but the core concept of immediate communication is
versatile and can be applied to other scenarios such as con-
volutional models. Given the increasing prevalence of large
model workloads in data centers and the growing demand
for efficient communication, we anticipate significant per-
formance gains through our technique. In addition, we are
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applying our approach to vLLM [13]. Only by substituting
the individual kernel without overlapping, we can achieve
5.2% to 11.1% speedup in Llama 3’s end-to-end inference la-
tency. The speedup is attributed to better spatial locality and
more efficient block usage than the original vLLM implemen-
tation, and we are working on the overlapping integration.

2 Background
Distributed LLM. We briefly introduce the Llama 3-70B
model architecture and how communication happens. LLMs
primarily rely on General Matrix Multiplication (GeMM)
operations, with model weights and activations distributed
across multiple GPUs due to memory limitations. Figure 1
shows the Llama 3-70B model inference workflow, exempli-
fying that GeMM is the dominating operator. Each colored
box represents a GeMM operation, while the dashed boxes
indicate that GeMM is distributed across GPUs, where an
All-reduce or All-gather is performed after the GeMM.
Inter-operator Overlapping. Existing studies mainly fo-
cus on computation and communication overlapping across
independent operators, such as gradient calculations and
communications in adjacent layers. A common solution is
the use of execution schedulers [8, 15, 20, 22], which in-
troduces lightweight layers between ML frameworks and
the execution engine. On the other hand, compilation-based
methods [4, 9, 11, 23, 24, 26, 29] enhance execution speed by
optimizing model operational graphs after training. Among
related works, CoCoNet [10] and T3 [21] are the most closely
aligned with fine-grained intra-operator overlapping. Co-
CoNet introduces an additional scheduler and requires users
to code in a DSL, while T3 depends on specialized hardware.
In contrast, DistFuse can be seamlessly integrated into frame-
works like PyTorch without user intervention or hardware
support, offering a more practical and accessible solution.
And we aim to achieve significant speedup by leveraging
caching effects through overlapping dependent kernels.
GPU Communication. Traditionally, communication be-
tween GPUs involves the CPU and uses the PCIe interface,
resulting in kernel overhead. Nvidia’s GPUDirect technol-
ogy enables GPUs to access peer memory using a unified
memory address space without involving the CPU. For local
GPUs, data is transferred directly via NVLink; for remote
machines, GPUDirect leverages RDMA to facilitate efficient
data transfer, reducing the latency by bypassing the CPU and
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Figure 1. Llama 3-70B Model Architecture. Dashed boxes indicate distributed GeMM.
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enabling a more flexible programming model. At the soft-
ware level, customizing the All-reduce kernel with NCCL [6]
has been challenging due to its latency and complexity, while
recent solutions like TensorRT-LLM [7] offer more portable
communication CUDA kernels that we can adapt.

3 Immediate Communication
The core idea of DistFuse is to trigger communication
immediately, rather than waiting for the entire com-
putation to finish. In this paper, we use distributed GeMM
with All-reduce as an example to illustrate our idea due to
its prevalence in today’s LLM applications. GeMM opera-
tions can involve very large dimensions. For example, the
Down Projection GeMM in Llama 3-70B has dimensions
[M=1,024, N=8,192, K=28,672], and the operation is usually
spread across multiple GPUs using Tensor Parallelism. Each
GPU handles a portion of the input, performs local compu-
tations, and then runs an All-reduce to communicate the re-
sults after all local computations are done. The inter-operator
overlapping cannot be applied here due to dependency.

We observe that, although GPU utilizes the SIMD (Single
Instruction Multiple Data) programming model, the hard-
ware does not compute all data synchronously. In practice,
some outputs are generated earlier than others. Leveraging
this, DistFuse starts the communication as soon as parts of
the data are ready, to enable fine-grained overlapping with
remaining computation. To further elaborate on the details,
the following section outlines the two main challenges we
encounter and the strategies we employ to overcome them.

3.1 Granularity
The first challenge is determining the optimal data size to
trigger communication. While triggering communication for
each data element is straightforward and could maximize
latency hiding, it introduces significant initiating commu-
nication overhead and requires rewriting the computation

1st tile 2nd tile 3rd tile 4th tile

2nd tile1st tile 3rd tile 4th tile 5th tile

All-reduce
GeMM

: Dependency between tile-wise operations

Figure 3. Overlapping at Fused Tile-wise GeMM & All-
reduce Pipelining within a SM

kernels. To address this, we propose triggering communica-
tion for each tile. A "tile" refers to a sub-matrix of the original
GeMM. Figure 2 illustrates the tile-wise distributed GeMM
followed by a tile-wise All-reduce.
The tile-wise method is widely used for GeMM in off-

the-shelf libraries, and we adopt the tile-wise GeMM kernel
from CUTLASS [5], one of the open-sourced back-ends of
PyTorch. However, tile-wise operation is rarely applied to
communication libraries like NCCL, which uses contiguous
buffers for sequential communication. Therefore, we develop
a new tile-wise communication library for DistFuse based
on GPUDirect P2P access. The tile-wise All-reduce splits the
original All-reduce into multiple collective calls and handles
non-contiguous memory. Additionally, we ensure the tile
widths align with the GPU cache line size (128 bytes for A100
GPUs) to reduce access overhead. By adopting this pattern,
we verify our tile-wise All-reduce achieves performance on
par with NCCL’s optimized All-reduce kernels.
By applying tile-wise GeMM and All-reduce, we achieve

overlapping across tiles in a Streaming Multiprocessor (SM).
Tile tasks are distributed among SMs; each SM completes
the GeMM operation for a tile and then begins its communi-
cation phase while starting the next tile’s GeMM, creating
an operation pipeline. Traditional All-reduce waits until all
GeMM finishes, but as shown in Figure 3, our tile-wise All-
reduce transmits partial results as soon as the first tile is
done. Tile-wise overlapping requires each SM to be allocated
with more than one tile. For instance, on an Nvidia A100
GPU with 108 SMs, overlapping occurs only when more than
108 CTAs are launched. DistFuse by default launches one
dedicated CTA (Cooperative Thread Array) per tile for large
GeMM, and applies Split-K [12] to split a tile into multiple
CTAs, balancing the workload across SMs.

3.2 Hardware Scheduling
The second is an engineering challenge: the compiler often
fails to generate a binary that executes operations simulta-
neously, even if the operations are obviously parallel and
use different types of hardware resources. The most straight-
forward method to achieve tile-wise overlapping is to fuse
GeMM and All-reduce into a single kernel, where each CTA
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GeMM Size
[M,N,K]

PyTorch
GeMM

PyTorch
All-reduce

DistFuse
GeMM

DistFuse
All-reduce PyTorch DistFuse w/o

Overlap DistFuse

[1024,8192,8192] 166.0us 221.0us 168.9us 234.5us 387.0us(100%) 403.4us(95.9%) 333.8us(115.9%)
[1024,8192,28112] 534.5us 221.0us 536.6us 234.5us 764.5us(100%) 771.1us(99.1%) 621.6us(123.0%)

Table 1. Llama 3 Attention block’s Distributed GeMM Layers. [M, N] is the output size, K is the middle dimension.
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Figure 4. Random Starting of Overlapping1.

first computes a GeMM tile and then performs an All-reduce.
However, this approach has inherent issues.
To illustrate the issue, we conduct the following experi-

ments. We first define two operations: TensorOps (Matrix
Multiply-Accumulate instructions using Tensor Cores) and
LdOps (global memory reads). Although these operations
can overlap when executed separately, fusing them into one
kernel revealed inconsistencies. We test two cases: Case 1
where each CTA executes TensorOps followed by LdOps,
and Case 2 where the order of TensorOps and LdOps is re-
versed. There are no data dependencies between TensorOps
and LdOps, and we have enabled all compiler optimizations.
Ideally, with two fused operators launched per SM, both
cases can achieve certain overlapping. However, as shown in
Figure 4, only Case 1 achieves ideal overlapping, while Case
2 results in no overlap. We confirm this issue consistently
exists in other tasks and hardware (tested with V100, A100,
and H100). We check the compiled SASS code and suspect
that this is rooted in the compiler and hardware scheduler
which is transparent to end-users.

To overcome this limitation, we propose adding an ex-
plicit synchronization barrier for each tile and launching
GeMM and All-reduce in two streams with a shared buffer.
Once a GeMM tile is ready, it will set the corresponding flag
in the buffer, while the All-reduce will busy-wait until the
flag is set. This empirical solution consistently ensures the
desired overlapping for all cases and hardware we tested.

3.3 Preliminary Evaluation
Model. We test DistFuse on Llama 3-70B’s inference (Figure
1), one of the most popular publicly accessible LLMs. Our
parallelism follows the strategy specified in Meta’s source
code [17]. Within each attention block, both the Attention
Score and the Down Projection layers employ distributed
GeMM, utilizing row parallel GeMM in conjunction with All-
reduce. Additionally, the initial embedding and final output
layer utilize column parallel GeMM coupled with All-gather.
Hardware We conduct our evaluation in one ASUS ESC
N4A-E11 server that runs Ubuntu 22.04 with CUDA 12.1, and
PyTorch 2.1.2, equipped with 4 NVIDIA A100-40GB GPUs.

GPUs are P2P connected by NVLink.
Speedup. Two layers in Llama 3’s attention block require
communication, with 8.43% to 25.05% of inference latency
spent on it. Table 1 compares DistFuse and PyTorch for these
layers, with the first row showing the Attention Score layer
and the second the Down Projection layer. Our evaluation
confirms that DistFuse’s tile-wise GeMM kernel matches the
performance of PyTorch’s standard GeMM kernel. While the
tile-wise All-reduce introduces around a 6% overhead2, it
remains competitive with PyTorch’s NCCL [6] backend. Tak-
ing PyTorch as the baseline, we observe a 2% performance
degradation in our kernel due to implementation inefficiency
without overlapping. However, enabling overlapping results
in a 20.5% speedup. Overall, DistFuse achieves a 44.3% reduc-
tion in All-reduce communication latency.
Integration to vLLM. We are integrating our idea into
vLLM and have implemented DistFuse’s tile-wise All-reduce.
We observe 5.2% to 11.1% end-to-end latency speedup on
Llama 3-70B. We believe this is because vLLM optimizes
kernels independently and accesses data linearly during All-
reduce, whereas our tile-wise All-reduce preserves the spatial
locality of GeMM. We expect further speedups from Dist-
Fuse’s overlapping, with the current improvement as a lower
bound, and caching effects from avoiding global memory
access may even exceed the speedup from overlapping.

4 Discussion and Future Work
The current experiments demonstrate that fine-grained ker-
nel fusion significantly enhances the performance of atten-
tion blocks evenwithin a single-node environment. However,
Llama 3 inference with NVLink does not present a significant
communication bottleneck scenario. Moving forward, we
plan to extend our evaluation to both the training process
and large-scale, multi-node experiments. We also aim to go
beyond the GeMM& All-reduce operators, where immediate
communication could offer significant benefits. Besides, us-
ing the current implementation is incomplete which requires
manual configurations, which is inefficient for real-world
deployment. We plan to develop DistFuse as a comprehen-
sive framework, which can automatically identify overlap-
ping opportunities and select the most appropriate tile size
based on a model execution plan. Additionally, we aim to
explore finer-grained overlapping by co-designing computa-
tion and communication kernels, enabling higher MFU from
instruction-level parallelism.

2This is an implementation issue that can be further improved instead of a
fundamental overhead from the immediate communication methodology.
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