
Mewz: Lightweight Execution Environment for
WebAssembly with High Isolation and Portability

Using Unikernels
Soichiro Ueda
Kyoto University
Kyoto, Japan

ueda@inet.media.kyoto-u.ac.jp

Ai Nozaki
University of Tokyo

Tokyo, Japan
nozaki@hal.ipc.i.u-tokyo.ac.jp

Daisuke Kotani
Kyoto University
Kyoto, Japan

kotani@media.kyoto-u.ac.jp

Yasuo Okabe
Kyoto University
Kyoto, Japan

okabe@media.kyoto-u.ac.jp

Abstract
Cloud computing requires isolation and portability for work-
loads. Virtual machines, for isolation, and containers, for
portability, are widely used to achieve these requirements
these days. However, using VMs and containers together
entails two problems. First, VMs and containers have over-
heads that degrade performance. In addition, container im-
ages depend on host operating systems and architectures.
To solve these problems, we propose a new system that dis-
tributes applications asWebAssembly (Wasm) and runs them
as unikernels. Additionally, we propose a mechanism to con-
vert a Wasm application into a unikernel image with the
Wasm binary AoT-compiled to native code. We evaluated the
performance of the system by running a simple HTTP server
compiled into Wasm. The result showed that it ran Wasm
applications with lower overhead than existing technologies.

1 Introduction
These days, many application developers use cloud com-
puting to provision computing resources and deliver ap-
plications as containers. However, Combining containers
and cloud computing entails two problems. First, container
images depend on host operating systems and CPU architec-
tures. Second, the virtualization overhead of both containers
and VMs degrades performance.
There are existing solutions to each of these challenges.

For example, substitution of containers with WebAssembly
is proposed to solve the portability problem[8]. To reduce
the overheads of guest kernel on VMs, previous researches
proposed unikernels, which are specialized kernels for each
application[6]. However, no solution solves both problems.
We propose a new system where applications are dis-

tributed as WebAssembly and run them as unikernels. This

HotInfra ’24, November 3, 2024, Austin, TX, USA
.

system solves both the portability and virtualization over-
head problems. However, the issue lies in converting a We-
bAssembly binary into a unikernel image, becauseWebAssem-
bly cannot be simply linked with kernel codes. Moreover, it is
preferable to compile WebAssembly ahead of time (AoT) into
native code for performance reasons. We devise a new mech-
anism to do it by exploiting WebAssembly System Interface,
which is the standardized API forWebAssembly to access sys-
tem resources. We combine an AoT-compiled WebAssembly
binary and kernel codes that provide WebAssembly System
Interface by symbol resolution. We realized it by developing
a unikernel that provides WebAssembly System Interface
and an AoT compiler that converts WebAssembly to native
code.
We evaluate our system with an HTTP server that dis-

tributes static files. The result shows that our system exe-
cutes Wasm applications with lower overhead than existing
technologies.

2 Background
There are two main requirements for cloud computing: iso-
lation and portability. Each workload must be sufficiently iso-
lated to avoid interference between users[14]. Cloud providers
must ensure kernel-level isolation between workloads of
different tenants[7]. Also, cloud applications should be eas-
ily moved to different cloud environments or even to on-
premises servers. To achieve the two requirements, VMs and
containers are usually used. Users deploy their applications
as container images and cloud providers run them on VMs us-
ing hypervisors. Containers must be used with VMs because
containers do not provide isolation of host kernels unlike
VMs. However, there are two problems with this method.
This study focuses on solving these problems at the same
time.
First, the portability of container images is restricted to

the same host operating system and the same architecture.
Containers cannot run on different operating systems since

HotInfra ’24, November 3, 2024, Austin, TX, USA Ueda et al.

they share the same kernel with the host Container images
also contain binaries compiled for a specific architecture,
so they cannot be executed on different architectures. This
enforces container images to be made for each operating
system and architecture. It becomes a problem in environ-
ments such as cloud-edge continuum[12], where the same
applications run on both cloud and resource-restricted edge
devices with different ISAs and OSes. Applications must be
distributed in such a way that they can run on any OSes and
architectures.
Second, the overheads incurred by VMs and containers,

respectively, occur simultaneously. One of the overheads
of virtual machines is incurred when applications access
hardware[5]. Applications issue system calls to the guest
kernel and the guest kernel accesses the virtual hardware
provided by the hypervisor. Then, the hypervisor emulates
the device by operating the physical hardware. Thus, it re-
quires more time to access hardware than running applica-
tions on physical machines. Network isolation is one of the
major overheads for containers[15]. In containers packet pro-
cessing occurs twice: once at the virtual network interface
of the container and once at the physical network interface
of the host. This results in larger packet processing time
compared to the case without containers. Consequently, us-
ing containers on a virtual machine accepts both overheads,
resulting in a significant performance degradation[17].
Previous researches have proposed solutions to each of

these problems. Our research aims to solve both problems at
the same time, by combining two solutions.
Unikernels[1] are a kind of lightweight kernel designed

to run in cloud. With unikernels, a single application is stat-
ically linked with the kernel into a single kernel image at
build time. Thus, the application can call kernel functions
directly, which reduces the overhead of system calls. How-
ever, since unikernel is built for an ISA, the kernel image of
unikernel depends on the architecture. Running the same ap-
plication with unikernels on different architectures requires
building a unikernel image for each architecture. Therefore,
unikernels do not solve the portability problem.
WebAssembly[3] (Wasm) is a portable binary format for

executable code. Wasm can be executed on any host oper-
ating system and CPU architecture using a Wasm runtime.
The OS/CPU architecture-independence of Wasm makes it a
good candidate for solving the portability problem. Instead
of distributing applications in the form of container images,
applications may be compiled into Wasm and deployed. This
allows the distribution of a single Wasm binary regardless
of OSes and architectures of target environments. However,
Wasm alone cannot provide the isolation required for cloud
computing[13]. This is because Wasm shares the host ker-
nel as well as containers. If developers run Wasm in cloud,
virtual machine isolation will be required. This means that
using Wasm as an alternative to containers does not solve
the virtualization overhead issue.

Source
Code

Wasm
Binary

Kernel
Image

Link

Cloud Provider

VM Instance

Application
(unikernel)

VM Instance

Application
(unikernel)

Wasm
Binary

Unikernel
Implmentation

User

Compile

Figure 1. Architecture of the system

3 Design and Implementation
This section proposes a new system that combines Wasm
and unikernels to solve the problems of portability and over-
heads.
First, applications are compiled into Wasm binaries and

distributed. In cloud environments, Wasm binaries are linked
into unikernel images. The unikernel images are then run
on VMs. The figure 1 shows the architecture of the system.
This architecture benefits from the lightweightness of

unikernels while ensuring the portability of binaries. With
conventional unikernels, users must build a kernel image
from source codes of applications, and distribute it to cloud.
In this way, users cannot deploy applications to environ-
ments with other architectures quickly and easily. Some
unikernels can execute Linux binaries[11]. Even with these
unikernels, the built binary is dependent on the OS and the
architecture. Thus, it is difficult to distribute portable binary
enjoying the advantages of unikernels. With this system, de-
velopers can run applications with low overheads on cloud
while they can deploy the same binary to any environments,
such as edge devices with other architectures.
To implement this system, we need to convert Wasm bi-

naries into unikernel images. But Wasm is a virtual ISA so it
cannot be linked with kernel codes directly. Additionally, it is
desirable to AoT compile Wasm to native code for better per-
formance. Thus, it is a challenge to combine a Wasm binary
and kernel codes into a unikernel image while converting
Wasm to native codes.

The key to solving this challenge is WebAssembly System
Interface (WASI). WASI[4] is a specification of API that pro-
vides system resources, such as network and file system. In
other words, WASI acts like a system call in Wasm. Unlike
general system calls, WASI provides its interface in the form
of functions. WASI is defined only as a specification of its
API, and its implementation is left to each runtime that uses

Mewz: Lightweight Execution Environment for
WebAssembly with High Isolation and Portability Using Unikernels HotInfra ’24, November 3, 2024, Austin, TX, USA

fd_write:
 ...

(func
 ...
 call $fd_write
 ...

)

func fd_write() {
 ...

 ...

}

...

call fd_write

...

Wasm Binary
（pseudo code in text format）

Source Code of Mewz
（psuedo code in Zig）

Compile

Object File
(psuedo code
 in Assembly)

...

call 274080 <fd_write>

...

fd_write:
 ...

Link

Kernel Image
(psuedo code
 in Assembly)

Figure 2. Linking process of Wasm and Mewz

WASI. Therefore, Wasm binaries have instructions that call
WASI functions. As shown in the figure 2, we can build a
unikernel image containing a Wasm application. First, we
compile a Wasm binary into an object file with WASI func-
tion symbols unresolved. Then, we link the object file with
kernel codes that have WASI functions. Thus, WASI acts as a
boundary between an application and kernel codes, enabling
Wasm to be linked with kernel codes. No other portable bi-
nary format, such as JVM bytecode and LLVM IR, has this
feature. To do the above steps, we developed two softwares:
Mewz and Wasker.

Mewz[9] is a unikernel that provides WASI API. Mewz is a
unikernel specialized forWasm execution so its functions are
provided only through WASI. Mewz has only the functional-
ity necessary for WASI implementation, which minimizes
the functionality. It has features of memory management,
network, a read-only file system, and so on. However, it does
not implement thread functionality, since the current version
of WASI does not have thread API. This shortage can be cov-
ered by scaling out the number of VM instances. It reduces
the overhead of thread creation, switching, and scheduling.
Wasker[16] is an AoT compiler that converts a Wasm bi-

nary to native code on a target CPU architecture. Wasker
compiles a Wasm binary into an object file, leaving WASI
functions as unresolved symbols. This means the object file
converted from Wasm does not contain WASI implemen-
tations. After AoT compilation by Wasker, the object file
can be linked with Mewz by symbol resolution, as shown
in the figure 2. Wasker uses LLVM as a backend for AoT
compilation.

th
ro

ug
hp

ut
 (r

eq
ue

st
s

/ s
ec

)

0

5000

10000

15000

20000

WasmEdge on
Linux

WasmEdge on
Nanos

Mewz

Figure 3. Result of the performance evaluation

4 Performance Evaluation
For evaluation, we ran a simple HTTP server compiled into
Wasm that distributes static files on the system.We compared
the performance of the following three environments: Mewz,
WasmEdge on Linux, and WasmEdge on Nanos.

Nanos is a unikernel that executes Linux application binaries[10].
Therefore it can run WasmEdge compiled for Linux.

For benchmarking, we used an HTTP benchmarking tool
called wrk[2]. wrk continuously sends HTTP requests to a
specified URL and measures the throughput. wrk keeps send-
ing requests in parallel with a specified number of threads
while maintaining a specified number of connections. In this
evaluation, 16 threads and 800 connections were loaded for
60 seconds.

We prepared two physical machines andwrkwas executed
on one of them. A KVM virtual machine was created on the
other machine and the target was executed on it. The two
physical machines were connected with an L2 switch. On
the KVM host, a Linux Bridge was created and connected to
the TAP device assigned to the virtual machine.
The benchmark machine was equipped with an AMD

Ryzen 9 5900HX CPU, 32GB of memory, and a 2.5Gbps eth-
ernet interface. The KVM host machine had Intel Xeon E3-
1245v5 CPU, 16GB of memory, and a 1Gbps ethernet inter-
face.
The result of the evaluation is shown in the figure 3.

The throughput of Mewz is 1.3 times higher than that of
WasmEdge on Linux and 1.1 times higher than that ofWasmEdge
on Nanos. This result shows that Mewz has a lower overhead
than WasmEdge on Linux and Nanos. Mewz allows Wasm
to call kernel functions directly, which reduces the overhead
of system calls. Additionally, Mewz entails no overhead of a
Wasm runtime or other functionality that is not necessary
for Wasm execution.

HotInfra ’24, November 3, 2024, Austin, TX, USA Ueda et al.

5 Conclusion
This paper proposed a new system that combines Wasm
and unikernels. It solves the problems of portability and
overheads when using containers and VMs in cloud com-
puting. By adopting Wasm, it enables applications to be run
on any host operating system and CPU architecture, unlike
container images. Running Wasm as a unikernel reduces
the overhead of guest OS accompanying virtual machine
isolation. To implement this architecture, we developed a
unikernel with WASI API and an AoT compiler that con-
verts Wasm to native code. We evaluated the performance
of the system by running a simple HTTP server compiled
into Wasm. The result showed that it ran Wasm applications
with lower overhead than existing technologies.

References
[1] Nabil El Ioini, Ayoub El Majjodi, David Hastbacka, Tomas Cerny, and

Davide Taibi. 2023. Unikernels Motivations, Benefits and Issues: A
Multivocal Literature Review. In Proceedings of the 3rd Eclipse Security,
AI, Architecture and Modelling Conference on Cloud to Edge Continuum.
39–48.

[2] Will Glozer. 2022. wrk - Modern HTTP benchmarking tool. visited on
2024-01-28.

[3] WebAssembly Community Group. 2019. WebAssembly Core Specifi-
cation. https://www.w3.org/TR/wasm-core-1/. visited on 2024-01-28.

[4] WebAssembly Community Group. 2020. WebAssembly Sys-
tem Interface. https://github.com/WebAssembly/WASI/blob/
d8b286c697364d8bc4daf1820b25a9159de364a3/phases/snapshot/
docs.md. visited on 2024-01-28.

[5] Zheng Li, Maria Kihl, Qinghua Lu, and Jens A Andersson. 2017. Perfor-
mance overhead comparison between hypervisor and container based
virtualization. In 2017 IEEE 31st International Conference on advanced
information networking and applications (AINA). IEEE, 955–962.

[6] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library operating systems for
the cloud. ACM SIGARCH Computer Architecture News 41, 1 (2013),
461–472.

[7] Ilias Mavridis and Helen Karatza. 2023. Orchestrated sand-
boxed containers, unikernels, and virtual machines for isolation-
enhanced multitenant workloads and serverless computing in
cloud. Concurrency and Computation: Practice and Experi-
ence 35, 11 (2023), e6365. https://doi.org/10.1002/cpe.6365
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6365

[8] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni.
2022. WebAssembly as a Common Layer for the Cloud-edge Con-
tinuum. In Proceedings of the 2nd Workshop on Flexible Resource and
Application Management on the Edge. 3–8.

[9] Mewz. 2024. A unikernel designed specifically for running Wasm
applications and compatible with WASI. https://github.com/mewz-
project/mewz visited on 2024-09-09.

[10] Nanos. [n. d.]. nanos - A kernel designed to run one and only one
application in a virtualized environment. visited on 2024-01-28.

[11] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy
Ravindran. 2019. A binary-compatible unikernel. In Proceedings of
the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (Providence, RI, USA) (VEE 2019). Association
for Computing Machinery, New York, NY, USA, 59–73. https://doi.
org/10.1145/3313808.3313817

[12] Adrián Orive, Aitor Agirre, Hong-Linh Truong, Isabel Sarachaga, and
Marga Marcos. 2022. Quality of Service Aware Orchestration for

Cloud–Edge Continuum Applications. Sensors 22, 5 (2022). https:
//doi.org/10.3390/s22051755

[13] Aaron Schlesinger. 2024. What is Hyperlight? https://arschles.com/
blog/hyperlight-overview-1/ visited on 2024-01-28.

[14] S. Subashini and V. Kavitha. 2011. A survey on security issues in
service delivery models of cloud computing. Journal of Network and
Computer Applications 34, 1 (2011), 1–11. https://doi.org/10.1016/j.
jnca.2010.07.006

[15] Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. 2018. An analysis and
empirical study of container networks. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 189–197.

[16] Wasker. 2024. WebAssembly AoT compiler for your favorite Operating
System. https://github.com/mewz-project/wasker visited on 2024-09-
09.

[17] Fei Xu, Fangming Liu, Hai Jin, and Athanasios V Vasilakos. 2013. Man-
aging performance overhead of virtual machines in cloud computing:
A survey, state of the art, and future directions. Proc. IEEE 102, 1 (2013),
11–31.

https://www.w3.org/TR/wasm-core-1/
https://github.com/WebAssembly/WASI/blob/d8b286c697364d8bc4daf1820b25a9159de364a3/phases/snapshot/docs.md
https://github.com/WebAssembly/WASI/blob/d8b286c697364d8bc4daf1820b25a9159de364a3/phases/snapshot/docs.md
https://github.com/WebAssembly/WASI/blob/d8b286c697364d8bc4daf1820b25a9159de364a3/phases/snapshot/docs.md
https://doi.org/10.1002/cpe.6365
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6365
https://github.com/mewz-project/mewz
https://github.com/mewz-project/mewz
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.3390/s22051755
https://doi.org/10.3390/s22051755
https://arschles.com/blog/hyperlight-overview-1/
https://arschles.com/blog/hyperlight-overview-1/
https://doi.org/10.1016/j.jnca.2010.07.006
https://doi.org/10.1016/j.jnca.2010.07.006
https://github.com/mewz-project/wasker

	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	4 Performance Evaluation
	5 Conclusion
	References

