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1 Introduction
To combat climate change, we must reduce carbon emissions
from Information and Communication Technology (ICT),
which can cause 20% of global emissions by 2030 [6]. Cloud
computing will be a major part of ICT’s emissions [6]. Thus,
we must reduce cloud computing’s emissions.

To reduce ICT’s emissions from cloud computing, we must
reduce the cloud’s operational emissions (e.g., from producing
electricity to run data centers) and embodied emissions (e.g.,
from semiconductor fabs that make server components) [6].
Today, embodied emissions account for 50%–82% of cloud
emissions, due to energy optimizations and renewable en-
ergy use [6]. Thus, it is crucial to reduce both emission types.
To reduce cloud computing’s operational and embodied

emissions, we identify designing carbon-efficient cloud com-
pute server Stock Keeping Units (SKUs) as a promising so-
lution. Server SKU design is the process by which selected
hardware components are composed into a server. Typically,
cloud providers design compute server SKUs to meet perfor-
mance and cost goals. To reduce emissions, we introduce a
new way of designing carbon-efficient compute server SKUs,
or “GreenSKUs,” that trade off performance for lower carbon.

We find that deploying GreenSKUs is promising for three
reasons. First, we use a data center carbon model [2] to
find that compute servers at Azure cause most cloud emis-
sions, as shown in the carbon breakdown in Fig. 1. Second,
cloud servers are often underutilized [4], making a case for
right-sizing server performance to save emissions. Third,
GreenSKU deployment is more feasible today with the avail-
ability of carbon-efficient commodity server components,
e.g., energy-efficient cores [1].
Due to GreenSKUs’ promise, we design and build three

GreenSKUs using low-carbon components thatmitigate cloud
compute servers’ key sources of operational and embodied
emissions1. Our GreenSKUs incrementally incorporate three
low-carbon components: energy-efficient high-thread-count
CPUs [1], reuse of old DRAM with Compute Express Link
(CXL) [14], and reuse of old Solid State Drives (SSDs).

1This work was published in the proceedings of 2024 International Sympo-
sium on Computer Architecture [16].
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Figure 1.Carbon breakdown of general-purpose data centers
at Azure.

While GreenSKUs promise carbon savings, we demon-
strate several challenges that limit cloud providers from prac-
tically deploying them. First, a GreenSKU may compromise
performance. Thus, it is challenging to design GreenSKUs
while navigating their emissions vs. performance tradeoff, to
justify deploying them at scale. Second, a GreenSKU ’s oper-
ational and embodied emissions can have complex tradeoffs.
For example, reusing older server components can reduce
embodied emissions but may increase operational emissions
due to lower energy efficiency [5]. We refer to these fac-
tors that impact a GreenSKU ’s deployment potential, as the
GreenSKU ’s “adoption.” It is critical and challenging for cloud
providers to identify which GreenSKU designs are adoptable.
To address these challenges, we develop a novel frame-

work, GSF , to enable cloud providers to evaluate a Green-
SKU ’s carbon savings in the cloud. GSF systematically con-
siders the major factors, such as performance and adoption,
that influence a GreenSKU ’s benefits at scale. GSF ’s compo-
nents model each major factor and their relationships.

We implement GSF within Microsoft Azure’s production
constraints to evaluate our three GreenSKUs’ carbon savings
at scale. Using our GSF implementation, we show that our
GreenSKUs reduce carbon emissions per core by 28% com-
pared to currently-deployed cloud servers at Azure. When
deploying GreenSKUs in a way that meets applications’ per-
formance goals, we reduce emissions by 15%. Finally, when
incorporating overall data center overheads, our GreenSKUs
reduce net cloud emissions by 8%, which is a significant
reduction at scale.

2 Our GreenSKU Prototypes
We show the potential in building GreenSKUs by building
prototype GreenSKUs that target the top three carbon con-
tributors in compute servers: CPUs, DRAM, and SSDs (Fig. 1).
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Figure 2. Our GreenSKU-Full design with AMD’s efficient
CPU, reused DDR4 DRAM (via CXL), and reused m.2 SSDs
(via e1.s and PCIe adapters).

Low-carbon components.Weuse three low-carbon com-
ponents in our prototypes. First, we use efficient CPUs with
high core counts, which are now widely available and can
reduce operational emissions [13]. We choose AMD Berg-
amo in our GreenSKU prototype, as it is on the market today
and has full support for CXL.mem devices.

Next, at Azure, we find that numerous old DDR4 DIMMs
can be reused, thus reducing embodied emissions, due to
their host servers reaching the end of their deployment. Crit-
ically, internal studies indicate that these old DIMMs show
no sign of increasing failure rates. Historically, reusing old
DRAM was challenging as DDR generations are not back-
ward compatible. However, today’s commodity CXL con-
trollers enable attaching old DDR4 to modern DDR5 systems.

Finally, we attach reused SSDs from decomissioned Azure
servers via PCIe. While modern SSDs fail due to exhausting
flash erasure cycles [11], even after seven years, most SSDs
offer more than half of the guaranteed erasure cycles.

Prototype SKUs.We build three GreenSKUs by incremen-
tally adding each carbon-efficient component (see Table 1):
(1) GreenSKU-Efficient uses AMD’s efficient Bergamo CPU,
(2) GreenSKU-CXL adds reused, CXL-attached DDR4, and
(3) GreenSKU-Full adds reused SSDs. Fig. 2 shows a logical
diagram and an image of our GreenSKU-Full prototype.

Performance characteristics. Low-carbon components
may have lower performance than the components of base-
line SKUs, which are currently-deployed SKUs at Azure. For
example, AMD Bergamo has a lower frequency and less LLC
capacity than AMD generations deployed at Azure.

Reusing DDR4 memory via CXL incurs higher latency [8]
and lower memory bandwidth than baseline SKUs. To reduce
such slowdowns, we use Pond’s approach [8]. This approach
ensures that 98% of applications incur <5% slowdown with
CXL, compared to running entirely with DDR5.

Reused SSDs also provide lower bandwidth and IOPS. We
mitigate lower SSD performance using striped RAID sets
that each offer more bandwidth and IOPS than the baseline
configurations; thus, old SSDs have no adoption side effects.

Challenges such as these performance impacts may cause
a GreenSKU to not be deployable, requiring a systematic way
to evaluate a GreenSKU ’s benefits at scale.
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Figure 3. Overview of the GreenSKU Framework (GSF ).

3 GSF: The GreenSKU Framework
To evaluate a GreenSKU , GSF estimates a data center’s emis-
sions from deploying a GreenSKU . GSF considers seven ma-
jor factors that influence a GreenSKU ’s carbon savings. It
considers each factor using distinct components, as shown
in Fig. 3. GSF specifies initial inputs (in yellow) to calcu-
late intermediate outputs (in blue boxes) for the GreenSKU
and baseline SKUs, which produce the final output, i.e., data
center emissions from deploying a GreenSKU .
We organize GSF ’s components into three levels, i.e., the

server-, rack-, and data center-level, based on which level
of the data center the component models. We discuss each
component by specifying the factor it considers and how we
implement it under Azure’s production constraints.
Carbon model. GSF requires a carbon model that com-

putes a SKU’s emissions. Our novel carbon model implemen-
tation systematically aggregates embodied and operational
emissions from server, rack, and data center components. As
in prior work [15], we consider reused server components to
be in their “second life,” with zero embodied emissions. For
more details, we have open-sourced our carbon model [2].
Performance. Since an application running on a Green-

SKU may face a lower performance-per-core, it may scale
up/out to suitably serve the target workload. GSF ’s perfor-
mance component must quantify such performance effects.
To implement this component, we benchmark the per-

formance of 20 open- and closed-source applications that
span the six application classes that run on most VMs in
Azure [12]. We measure a GreenSKU ’s performance by set-
ting a Service Level Objective (SLO) based on the perfor-
mance of three deployed baseline SKU generations, Gen 1, 2,
3, where Gen3 is a future generation that would be deployed
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instead of a GreenSKU . To achieve comparable performance,
we scale up the number of VM cores on the GreenSKU and
compare its performance against the baseline SKU. We then
calculate the scaling factor, which defines how many Green-
SKU cores per baseline SKU core are needed to meet an
application’s performance goals.

Maintenance. Server failures require an overhead of ad-
ditional servers [10]. As GreenSKUs may influence a server’s
Annual Failure Rate (AFR), we must calculate this overhead.
We estimate this overhead via an open-source maintenance
model [2] that uses component AFRs to calculate server
maintenance overheads across all SKUs.
Adoption. This component helps decide which applica-

tions can run on a GreenSKU while meeting deployment
goals (e.g., performance goals). To implement this compo-
nent, we calculate the carbon required to service the appli-
cation on a GreenSKU . To this end, we multiply the scaling
factor from the performance component by the CO2e-per-
core determined from the carbon model. We also calculate
this value for the baseline SKU. For each application, we
model that an application will adopt a GreenSKU if the cal-
culated carbon value to run the application on the GreenSKU
is lower than the baseline SKU’s value.

VM allocation and packing. Server design impacts how
well VMs can be packed into a cluster [7]. We account for this
factor using an internal VM allocation simulator with VM
arrival/departure traces from multiple Azure data centers.

Since the applications running in VMs are opaque in pro-
duction traces, we assign VMs to one of our representative
benchmark applications. We determine whether a VM can
run on a GreenSKU using our adoption model and the VM’s
application assignment. If a VM adopts the GreenSKU , we
apply the relevant scaling factor to the VM’s resources.

Cluster sizing. This component finds how many baseline
SKUs and GreenSKUs are required to service a data center’s
VM workload. We use a search algorithm via our allocation
simulator to find the number of each SKU that minimizes
emissions while supporting our VM workload.

Growth buffer. Cloud providers maintain a growth buffer,
i.e., extra server capacity to handle spikes in VM demand. We
account for this capacity as an overhead of baseline SKUs.

4 Evaluating our GreenSKUs Using GSF
We use GSF at Azure to evaluate our GreenSKUs from §2.

Evaluating GreenSKUs’ performance and adoption.
To evaluate our GreenSKUs’ performance, we measure the
95𝑡ℎ% tail latency across different Queries Per Second (QPS)
for each application.We set an application’s SLO as the 95𝑡ℎ%
tail latency achieved at 90% of the peak saturation through-
put when the application is run on the baseline SKU [9]. We
conduct three trials and report 99% confidence intervals.
We first evaluate GreenSKU-Efficient’s performance and

adoption. For brevity, in Fig. 4, we show results for one
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Figure 4. 95𝑡ℎ% tail latency vs. load (QPS) for applications
spanning three of our six application classes. Tail latency is
shown for 8-core configurations for the Gen3 baseline SKU
(in orange). The dotted orange line indicates an SLO set using
Gen3’s latency at 90% of peak load. For some applications
(e.g., Xapian and Nginx), GreenSKU-Efficient achieves the
SLO with scaling; for other applications (e.g., Masstree), the
scaling required outweighs carbon savings.

representative application in three of our classes. We show
results up to the minimum number of cores on GreenSKU-
Efficient that achieve a peak saturation throughput closest
to that of our Gen3 baseline SKU. We omit results for Gen1
and Gen2, as they consistently perform worse than Gen3.
For applications such as Masstree, even with 12 cores,

GreenSKU-Efficient cannot match Gen3’s peak throughput.
However, for other applications, like Xapian and Nginx,
GreenSKU-Efficient achieves SLOs with 10–12 cores. Thus,
GreenSKU-Efficient effectively meets the performance goals
of several latency-critical applications, albeit with scaling.

We repeat this study for all 20 applications, calculating the
scaling factors required relative to the three baseline SKUs.
For seven applications,GreenSKU-Efficient meets Gen3’s SLO
without scaling. For another nine applications, scaling by
25% is required to achieve Gen3’s SLO. Our GSF adoption
component’s implementation notes the applications that
cannot be run on the GreenSKU if they offset carbon savings.
Thus, through GSF , we see that the GreenSKU meets the
performance goals of most applications while saving carbon.

Next, we study GreenSKU-CXL’s performance to evaluate
older memory reuse via CXL. We find that 20.2% of our appli-
cations, weighted by fleet core-hours, do not face significant
performance penalties when running on GreenSKU-CXL.
Evaluating GreenSKUs’ impact on VM packing.We

now evaluate how well we can pack VMs on our GreenSKUs.
We run VM packing simulations and our cluster-sizing algo-
rithm on 35 production VM traces.
In particular, when packing VMs on our GreenSKUs, we

use our simulator to validate whether there is enough un-
touched memory to back on CXL memory, thus mitigating
CXL-induced performance loss. To this end, each VM reports
the maximum amount of allocated memory that it uses over
its lifetime. To aggregate the maximummemory usage across
all VMs on each server, we periodically take snapshots of
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vice their VMs’ memory demand with local DDR5 memory.

SKU
Config.

#
Cores

# × DIMM
(GB)

# × SSD
(TB)

Operational
Savings

Embodied
Savings

Total
Savings

Baseline 80 12 × 64 6 × 2 - - -
GreenSKU-
Efficient 128 12 × 96 5 × 4 29% 14% 23%

GreenSKU-
CXL 128 12 × 64

8 × 32 CXL 5 × 4 23% 25% 24%

GreenSKU-
Full 128 12 × 64

8 × 32 CXL
2 × 4
12 × 1 Reuse 17% 43% 28%

Table 1. Per-core operational, embodied, and total carbon
savings relative to our Gen3 baseline SKU for three incre-
mental GreenSKU configurations.
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Figure 6. End-to-end cluster-level carbon savings relative
to all baseline SKU clusters across carbon intensities evalu-
ated for our three GreenSKUs. Vertical lines mark estimated
carbon intensities for three Azure regions [3]. The bestGreen-
SKU depends on a data center’s operating conditions.

the servers. We then average across servers and snapshots
to identify a cluster’s average maximum memory utilization.
We show a CDF of the mean per-server maximum mem-

ory utilization in Fig. 5 for clusters with both baseline-only
SKUs and GreenSKU-CXLs. The shaded portion is the 25% of
memory reused via CXL. In most traces, we see a maximum
memory utilization below 60%, which can be accommodated
by GreenSKU-CXL’s local memory. Only 3% of traces have a
memory utilization that would require using CXL memory.

Moreover, we can leverage our observation that CXL does
not cause a performance loss for 20% of our applications,
to schedule such applications to use CXL-backed memory.
Thus, we show that reusing old DRAM via CXL does not
significantly impact GreenSKU-CXL’s adoption at Azure.

Evaluating GreenSKUs’ carbon savings. We now eval-
uate our GreenSKUs’ carbon savings using the average grid
Carbon Intensity (CI), i.e., the amount of carbon emitted per

unit of electricity generated, across major Azure data center
regions. Table 1 shows our GreenSKUs’ per-core operational
and embodied emissions savings over the Gen3 baseline SKU.
GreenSKU-Full, with our three carbon-efficient components,
emits 28% less carbon than the baseline SKU.
We now evaluate our GreenSKUs’ cluster-level carbon

savings using GSF ’s output. In Fig. 6, we show the cluster-
level carbon savings achieved when introducing each of our
GreenSKUs compared to a cluster of all baseline SKUs. We
evaluate across a spectrum of CI values. We show the CI
values for three Azure data center regions.

The cluster with GreenSKUs saves up to 25% carbon. The
lowest-carbon GreenSKU varies with a region’s CI. At higher
CI, GreenSKU-Efficient is effective due to not having energy-
inefficient reused components. At lower CI, embodied emis-
sions dominate, so GreenSKU-Full is effective. These subtle
tradeoffs between performance, carbon, and other GSF fac-
tors, motivate the need for GSF , to help evaluate GreenSKUs.

Even when factoring emissions sources beyond compute
servers, deploying GreenSKUs reduces cluster-wide savings
by 15% and net cloud emissions by 8%, which is a significant
reduction at scale.

5 Discussion
We analyze GreenSKUs’ monetary cost and discuss the need
to develop run-time schedulers for GreenSKUs.

GreenSKU cost analysis. GSF can be adapted to analyze
GreenSKUs’ effect on Total Cost of Ownership (TCO) by re-
placing the carbon model with a TCOmodel. To this end, our
TCO analysis reveals that a cost-efficient server SKU is only
5% less costly compared to our carbon-efficient GreenSKU .
This relatively small TCO loss may be tolerable to a cloud
provider seeking to meet aggressive decarbonization targets.
Moreover, cloud providers can use GSF to evaluate other
SKUs that achieve the required carbon vs. cost tradeoff.

Scheduling applications onGreenSKUs.Run-time sched-
ulers that leverage GreenSKUs, post-deployment, can help
realize a GreenSKU ’s full carbon-saving potential. To this
end, we are developing a carbon-aware scheduling system
that can suitably schedule components of distributed applica-
tions on GreenSKUs [17]. At run-time, our scheduling system
decides how many GreenSKU and baseline SKU VMs are re-
quired to schedule each component of a service, to minimize
carbon while meeting the service’s performance goals.
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