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Abstract
The advent of cloud computing has led to a dramatic in-
crease in the deployment of hyper-scale, diverse workloads
in containerized form on cloud infrastructures. This expan-
sion necessitates the management of numerous large-scale
clusters. However, Kubernetes (k8s), the industry standard
for container orchestration, faces challenges with low sched-
uling throughput and high request latency in such environ-
ments. We identify resource contention among components
co-located on the same master node as a primary bottle-
neck. To address this, we introduce a lightweight frame-
work designed to enhance the performance and scalability
of Kubernetes clusters. Our approach adaptively allocates
resources among co-located components, improving their
overall performance. Implemented as a non-intrusive so-
lution, our evaluations across various cluster scales show
significant improvements, with a 7.3 × increase in cluster
scheduling throughput and a 37.3% reduction in request la-
tency, surpassing the performance of vanilla Kubernetes and
baseline resource allocation strategies.

1 Introduction
With the rapid development of cloud computing, the growth
of diverse workloads, including microservices [2, 13], batch
processing jobs [4, 10], and Function as a Service (FaaS) [14,
17], has resulted in a substantial increase in the scale of nodes
and containers on cloud platforms. This expansion exerts
considerable pressure on the underlying infrastructure.

Kubernetes (k8s), a key component of cloud infrastructure
[8], is recognized for its role in container orchestration but
shows limitations in scaling within large-scale clusters. For
instance, operational constraints limit clusters to 5,000 nodes
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and cap the pod count per node at 110 [9]. In large-scale clus-
ters, Kubernetes performance degrades severely when han-
dling a surge of requests. Initially, request latency increases
significantly. The API server experiences delayed response
times for routine requests [3, 12], and the scheduler exhibits
a decrease in throughput during pod scheduling operations1
[3, 18]. Furthermore, cluster availability is at risk. The influx
of requests may overwhelm the cluster’s capacity, leading to
repeated crashes and restarts due to OOM (Out-Of-Memory)
issues, ultimately resulting in cluster inaccessibility.

To overcome Kubernetes’ scalability limitations and facili-
tate the unified deployment and management of extensive
workloads, there are numerous works in both industry and
academia focusing on enhancing a cluster’s capacity by op-
timizing control plane components [1, 5, 18], mechanisms
[3, 19], fault tolerance [6, 15], and resource utilization [16, 20].
However, most of these efforts are designed for specific sce-
narios and require modifications to the Kubernetes code,
leading to complex deployment.

This paper presents a lightweight framework to improve
the scalability of Kubernetes clusters. Driven by the prevalent
resource contention among components co-located on the
master node, our method dynamically adjusts the resource
allocation and traffic control parameters of control plane
components to improve the cluster’s overall efficiency.
We have seamlessly integrated our approach as a non-

intrusive plugin, requiring no changes to Kubernetes code.
We have conducted comprehensive evaluation across a range
of cluster scales and request intensities. The results high-
light significant performance improvements. Specifically, it
outperforms vanilla Kubernetes and alternative resource al-
location strategies by increasing scheduling throughput by
up to 7.3 × and reducing request latency by up to 37.3%.

The contributions of this paper are summarized as follows:
• We develop a queuing model for request processing of
Kubernetes and devise an algorithm for the dynamic

1In our test, as the cluster size grows from 1,000 to 5,000 nodes, the av-
erage latency has increased by 3.03×, and the scheduling throughput has
decreased by 38.5%.
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Figure 1. Architecture of the system highlighting the main
components in yellow. The data flow is centered on optimiz-
ing resource allocation and traffic control parameters, while
the request flow involves recommendation implementation.

optimization of resource allocation and traffic control
parameters to enhance overall performance.

• We implement our approach in a non-intrusive man-
ner, with experiments validating its superiority against
vanilla Kubernetes and baseline resource allocation
methods. The code is open-sourced on GitHub2.

2 Motivation and Methodology
2.1 Resource Contention among Co-located

Components
On Kubernetes master nodes, the concurrent operation of
multiple control plane components can lead to resource con-
tention, especially under heavy load. As the cluster scales,
resource contention becomes more severe. CPU contention
can cause performance degradation and latency. Memory
contention can result in OOM errors and component crashes,
affecting the cluster’s availability. The default Kubernetes
configuration does not consider master instance placement
and resource allocation, exacerbating contention. In a high-
availability setup, the arbitrary placement of master com-
ponents can concentrate them on a single node, increasing
resource contention and performance decline.

2.2 System Overview
Motivated by the resource contention problem, we aim to
design a system capable of adaptive resource allocation and
traffic control parameter adjustment. Fig. 1 illustrates the

2https://github.com/FROOOOOOO/ark-hotinfra
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Figure 2. Rate transition diagram for the birth-death process.

system’s architecture. During operation, the load fetcher
retrieves concurrency and resource utilization metrics from
Prometheus to determine the load of each component and ad-
just its CPU-concurrency mapping. The recommender cre-
ates periodic recommendations for CPU allocation and traffic
control parameters based on current load and mapping data,
which are then passed to the updater. The updater trans-
lates valid recommendations into executable requests sent
to the master node, and implements master instance place-
ment (place master instances of the scheduler and controller
manager on separate nodes to mitigate resource contention),
triggering the eventual updates.

2.3 Recommendation Algorithm
For each component, the optimal CPU allocation 𝑐∗ is cal-
culated by the recommender. And for the API server whose
mapping metrics and traffic control parameters are available,
the recommendation also includes the maximum concur-
rency 𝑓 ∗ and queue length 𝑞∗.
We model the request processing by control plane com-

ponents as queuing systems. Instead of using basic queuing
models such as M/M/1 and M/M/c, we construct a model
characterized by a birth-death process as shown in Fig. 2, be-
cause we find that the CPU-concurrency mappings 𝑓 (𝑥) are
nonlinear and dynamic, deviating significantly from those of
basic queuing models. Control plane components are catego-
rized into three groups based on their optimization objectives
(Group A: the API server and etcd, minimize latency𝑊 ; Group
B: the scheduler, maximize throughput 𝑆 ; Group C: the con-
troller manager, maintain stability, i.e., the maximum service
rate 𝜇 exceeds the arrival rate 𝜆.).

The recommender follows the workflow depicted in Fig. 3.
In a global steady state when all busy components on the
master node are steady, the objective is to minimize the aver-
age latency 𝑊̄ while maximizing the scheduling throughput,
and the optimization problem is formulated as follows:

min 𝑤𝐴𝑊̄ +𝑤𝐵

1
𝑆 + 1

,

s.t. min
(
𝑐∗𝑖 , 𝑓 (𝑓 ∗𝑖 )

)
> 𝑐′𝑖 , C.

(1)

Here, 𝑤𝐴 and 𝑤𝐵 are the weights assigned to balance the
optimization objectives for different components. In a global
unsteady state where the total CPU load of synchronous
components exceeds themaster node’s capacity, the objective
is to minimize the remaining CPU load 𝑙 while balancing the

https://github.com/FROOOOOOO/ark-hotinfra
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Figure 3. Flow chart of the recommendation algorithm.

time 𝑡 to process it:

min
∑︁
𝑖

𝑙𝑖 ,

s.t. 𝑡 = 𝑙𝑖/𝑐∗𝑖 , C.
(2)

For (1) and (2), C denotes constraints, including the total
allocated CPU within the node’s capacity, and the cluster’s
availability not violating the service level objective (SLO).

3 Implementation and Evaluation
The system is implemented in 4,500 lines of Python code.
Main components operate as standalone processes, interfac-
ing with Kubernetes clusters via the Kubernetes API. Such
flexible deployment requires only accessible master node IPs
and a prepared kubeconfig file.
We employ a linear interpolation method for mapping

learning and an ARMA model [11] for load metric predic-
tion. We develop a customized evolutionary algorithm to
efficiently solve (1) and (2). Specifically, the CPU granularity
is proportional to the remaining CPU3, controlling the size
of solution space and the solution time within the threshold.
The updater achieves resource allocation through vertical
pod scaling without pod restart, traffic control parameters
tuning through APF [7] mechanism, master instance place-
ment through pod redeployment under low pressure.
We evaluate the performance of our approach through

evaluations in terms of request latency and scheduling per-
formance using KWOK to simulate large-scale nodes.

As depicted in Fig. 4 and 5, our approach delivers substan-
tial performance improvements, reducing average latency by
9.58% to 37.27% and P99 read latency by 11.85% to 58.48%. Its
scheduling throughput is 1.78 to 7.3 times higher when man-
aging large workloads, and startup latency for urgent pods is
reduced by up to 80.51%. In summary, the recommendation
algorithm and master instance placement strategy effectively

3remain CPU = total CPU - total CPU load / time.
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Figure 4. Request latency metrics (LAR: latency of all re-
quests; LRR: latency of read requests).
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Figure 5. Scheduling performance (STLW: scheduling
throughput of large workloads; SLSW: startup latency of
small workloads).

Table 1. Resource and time cost.

Resource cost Time cost
Average/P99 Average/P99 Average/P99 Average/P99

CPU usage (core) memory usage (MB) update time (s) recommendation time (s)
0.04/0.85 179.53/180.96 0.24/0.41 3.75/8.28

mitigate resource contention, accelerating both request pro-
cessing and pod scheduling. Our approach demonstrates
superior performance compared to all baselines4.

To assess the overhead associated with our approach, we
have monitored its resource and time expenditures, as de-
tailed in Table 1. The CPU and memory consumption are
both within acceptable limits. The average time required for
updates is less than half a second. Regarding the recommen-
dation time, we set a solution time threshold of 10 seconds.
The actual time expenditure falls short of this threshold,
thereby highlighting the efficiency of our algorithm.

4 Conclusion and Future Works
This paper presents a lightweight framework developed to
enhance the Kubernetes performance in large-scale clusters.
To address resource contention among components, we in-
troduce a recommendation algorithm to optimize resource
allocation, as well as amaster instance placementmechanism
to mitigate resource contention. Evaluations demonstrate
the efficiency of our approach. The framework significantly
optimizes both request latency and scheduling throughput,
showcasing its ability to bolster Kubernetes cluster perfor-
mance. In future endeavors, we aim to further optimize the
4k8s-native: native k8s; k8s-static: k8s with static arguments optimiza-
tion; p99: take the 99th percentage usage as recommendation; weighted:
allocate resources weighted by load.
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master instance placement strategy, ensuring a more seam-
less and intelligent distribution of master instances.

Acknowledgments
We thank reviewers for their valuable comments. This work
was supported in part by the Key Research and Development
Program of China under Grant 2022YFF0902702, and in part
by the Major Program of National Natural Science Founda-
tion of Zhejiang (LD24F020014), and in part by the Zhejiang
Pioneer (Jianbing) Project (2024-C01032), and in part by the
Key R&D Program of Ningbo (2023Z235), and in part by the
Ningbo Yongjiang Talent Programme (2023A-198-G).

References
[1] Xingyu Chen. 2019. Performance optimization of etcd in web scale

data scenario. https://www.cncf.io/blog/2019/05/09/performance-
optimization-of-etcd-in-web-scale-data-scenario

[2] Ka-Ho Chow, Umesh Deshpande, Veera Deenadayalan, Sangeetha Se-
shadri, and Ling Liu. 2024. Atlas: Hybrid Cloud Migration Advisor
for Interactive Microservices. In Proceedings of the Nineteenth Euro-
pean Conference on Computer Systems (Athens, Greece) (EuroSys ’24).
Association for Computing Machinery, New York, NY, USA, 870–887.

[3] Alibaba Cloud Native Community. 2019. How Does Alibaba Ensure
the Performance of System Components in a 10,000-node Kubernetes
Cluster? https://www.alibabacloud.com/blog/how-does-alibaba-
ensure-the-performance-of-system-components-in-a-10000-node-
kubernetes-cluster_595469

[4] Jiangfei Duan, Ziang Song, Xupeng Miao, Xiaoli Xi, Dahua Lin, Harry
Xu, Minjia Zhang, and Zhihao Jia. 2024. Parcae: Proactive, Liveput-
Optimized DNN Training on Preemptible Instances. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI
24). USENIX Association, Santa Clara, CA, 1121–1139.

[5] Yihui Feng, Zhi Liu, Yunjian Zhao, Tatiana Jin, Yidi Wu, Yang Zhang,
James Cheng, Chao Li, and Tao Guan. 2021. Scaling Large Production
Clusters with Partitioned Synchronization. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). USENIX Association, 81–97.

[6] Jiawei Tyler Gu, Xudong Sun, Wentao Zhang, Yuxuan Jiang, Chen
Wang, Mandana Vaziri, Owolabi Legunsen, and Tianyin Xu. 2023. Acto:
Automatic End-to-End Testing for Operation Correctness of Cloud
System Management. In Proceedings of the 29th Symposium on Operat-
ing Systems Principles (Koblenz, Germany) (SOSP ’23). Association for
Computing Machinery, New York, NY, USA, 96–112.

[7] Kubernetes. 2024. API Priority and Fairness. https://kubernetes.io/
docs/concepts/cluster-administration/flow-control/

[8] Kubernetes. 2024. Kubernetes – Production-Grade Container Orches-
tration. https://kubernetes.io/

[9] Kubernetes. 2024. Kubernetes Scalability thresholds.
https://github.com/kubernetes/community/blob/master/sig-
scalability/configs-and-limits/thresholds.md

[10] Baolin Li, Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, Karen
Gettings, and Devesh Tiwari. 2021. RIBBON: cost-effective and qos-
aware deep learning model inference using a diverse pool of cloud
computing instances. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (St.
Louis, Missouri) (SC ’21). Association for Computing Machinery, New
York, NY, USA, Article 24, 13 pages.

[11] Spyros Makridakis and Michele Hibon. 1997. ARMA models and the
Box–Jenkins methodology. Journal of forecasting 16, 3 (1997), 147–163.

[12] OpenAI. 2021. Scaling Kubernetes to 7,500 nodes. https://openai.com/
research/scaling-kubernetes-to-7500-nodes

[13] Vighnesh Sachidananda and Anirudh Sivaraman. 2024. Erlang:
Application-Aware Autoscaling for Cloud Microservices. In Proceed-
ings of the Nineteenth European Conference on Computer Systems
(Athens, Greece) (EuroSys ’24). Association for Computing Machinery,
New York, NY, USA, 888–923.

[14] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang,
Abhigna Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang,
Wyatt Cook, Andrii Golovei, Pradeep Venkat, Andrew Mcfague, Dim-
itrios Skarlatos, Vipul Patel, Ravinder Thind, Ernesto Gonzalez, Yun
Jin, and Chunqiang Tang. 2023. XFaaS: Hyperscale and Low Cost
Serverless Functions at Meta. In Proceedings of the 29th Symposium on
Operating Systems Principles (Koblenz, Germany) (SOSP ’23). Associa-
tion for Computing Machinery, New York, NY, USA, 231–246.

[15] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan,
Ramnatthan Alagappan, Michael Gasch, Lalith Suresh, and Tianyin
Xu. 2022. Automatic Reliability Testing For Cluster Management
Controllers. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIX Association, Carlsbad, CA,
143–159.

[16] Ziliang Wang, Shiyi Zhu, Jianguo Li, Wei Jiang, K. K. Ramakrishnan,
Yangfei Zheng, Meng Yan, Xiaohong Zhang, and Alex X. Liu. 2022.
DeepScaling: microservices autoscaling for stable CPU utilization in
large scale cloud systems. In Proceedings of the 13th Symposium on
Cloud Computing (San Francisco, California) (SoCC ’22). Association
for Computing Machinery, New York, NY, USA, 16–30.

[17] Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: SLO-
Aware Dynamic Resource Configuration for Serverless FunctionWork-
flows. In IEEE INFOCOM 2022 - IEEE Conference on Computer Commu-
nications. 1868–1877.

[18] Wu Xiang, Yakun Li, Yuquan Ren, Fan Jiang, Chaohui Xin, Varun
Gupta, Chao Xiang, Xinyi Song, Meng Liu, Bing Li, Kaiyang Shao,
Chen Xu, Wei Shao, Yuqi Fu, Wilson Wang, Cong Xu, Wei Xu, Caixue
Lin, Rui Shi, and Yuming Liang. 2023. Gödel: Unified Large-Scale
Resource Management and Scheduling at ByteDance. In Proceedings
of the 2023 ACM Symposium on Cloud Computing (Santa Cruz, CA,
USA) (SoCC ’23). Association for Computing Machinery, New York,
NY, USA, 308–323.

[19] Jie Zhang, Chen Jin, YuQi Huang, Li Yi, Yu Ding, and Fei Guo. 2022.
KOLE: breaking the scalability barrier for managing far edge nodes
in cloud. In Proceedings of the 13th Symposium on Cloud Computing
(San Francisco, California) (SoCC ’22). Association for Computing
Machinery, New York, NY, USA, 196–209.

[20] Zhiqiang Zhou, Chaoli Zhang, Lingna Ma, Jing Gu, Huajie Qian, Qing-
songWen, Liang Sun, Peng Li, and Zhimin Tang. 2023. AHPA: Adaptive
Horizontal Pod Autoscaling Systems on Alibaba Cloud Container Ser-
vice for Kubernetes. Proceedings of the AAAI Conference on Artificial
Intelligence 37, 13 (Sep. 2023), 15621–15629.

https://www.cncf.io/blog/2019/05/09/performance-optimization-of-etcd-in-web-scale-data-scenario
https://www.cncf.io/blog/2019/05/09/performance-optimization-of-etcd-in-web-scale-data-scenario
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469
https://www.alibabacloud.com/blog/how-does-alibaba-ensure-the-performance-of-system-components-in-a-10000-node-kubernetes-cluster_595469
https://kubernetes.io/docs/concepts/cluster-administration/flow-control/
https://kubernetes.io/docs/concepts/cluster-administration/flow-control/
https://kubernetes.io/
https://github.com/kubernetes/community/blob/master/sig-scalability/configs-and-limits/thresholds.md
https://github.com/kubernetes/community/blob/master/sig-scalability/configs-and-limits/thresholds.md
https://openai.com/research/scaling-kubernetes-to-7500-nodes
https://openai.com/research/scaling-kubernetes-to-7500-nodes

	Abstract
	1 Introduction
	2 Motivation and Methodology
	2.1 Resource Contention among Co-located Components
	2.2 System Overview
	2.3 Recommendation Algorithm

	3 Implementation and Evaluation
	4 Conclusion and Future Works
	Acknowledgments
	References

