Harmonizing Diverse Compute Resources for
Efficiency

Dilina Dehigama
University of Edinburgh
Edinburgh, UK
dilina.dehigama@ed.ac.uk

Marios Kogias
Imperial College London
London, UK
m.kogias@imperial.ac.uk

Abstract

Online services are characterized by significant load fluctu-
ations at fine-grained intervals even when coarse-grained
load measurements indicate a relatively stable load. Run-
ning such services on virtual machines (VMs) rented from a
cloud provider like AWS, which is a typical way to deploy
online applications today, is inefficient due to the need to
overprovision VM capacity to meet the SLO under variable
load. In contrast, serverless computing is highly elastic but
is prohibitively expensive for serving a large volume of re-
quests. We thus argue for combining the different types of
compute (i.e., VM and serverless instances) to achieve both
cost-efficiency and elasticity. Our results show that hybrid
compute is more cost effective than even an optimal VM-
only allocation that provisions just enough resource to meet
the SLO using perfect knowledge of future load.

1 Introduction

Modern online services are increasingly complex and face
challenges in maintaining performance, particularly under
fluctuating load conditions. These services, typically de-
ployed in cloud VMs using container orchestration platforms
such as Kubernetes, require precise resource allocation to
meet stringent Service Level Objectives (SLOs) related to
latency and responsiveness. However, traditional resource
provisioning models — often based on coarse-grained load
measurements and slow-to-react resource allocations - fail to
account for the fine-grained variability in workload demands,
resulting in resource wastage (due to overprovisioning) or
SLO violations (due to underprovisioning).

While VMs do not offer the fine-grained elasticity desired
for online services, serverless functions do. Alas, today’s
cloud cost structures make serverless prohibitively expensive
for continuously serving a large volume of requests.

To optimize for both efficiency and cost, we propose a

hybrid approach. A stable "base" load can be handled by

The 2nd Workshop on Hot Topics in System Infrastructure (HotInfra’24), co-
located with SOSP’24, November 3, 2024, Austin, TX, USA

Shyam Jesalpura
University of Edinburgh
Edinburgh, UK
s.jesalpura@gmail.com

Boris Grot
University of Edinburgh
Edinburgh, UK
boris.grot@ed.ac.uk

VM for predictable performance and cost. Bursts of "excess"
load can be addressed by serverless functions for flexibility
and pay-per-use pricing. This combination offers the best of
both worlds: efficiency and cost-effectiveness.

Our evaluation demonstrates that combining VMs with
serverless functions to handle finer-grained fluctuations can
reduce total cost by 7.5% compared to a baseline that uses
an ideally provisioned VM capacity compute to meet SLO
targets. In a more realistic deployment, where VMs are pro-
visioned with 30% additional CPU capacity over an optimal
allocation in order to handle likely load fluctuations, the hy-
brid approach offers cost savings of up to 28.5%. These results
highlight the potential of hybrid compute models to enhance
resource efficiency and reduce costs while maintaining SLO
compliance.

2 Motivation
2.1 Modern Online Services & Deployment

Modern online services have grown increasingly complex
due to their diverse functionality [1, 2, 9, 10, 12]. These ser-
vices are subject to highly variable demand patterns due to
interactions with users [10]. Despite this variability, meeting
Service Level Objectives (SLOs)—particularly in terms of la-
tency and throughput is critical, as failure to do so degrades
the end-user experience [11]. Achieving SLO guarantees re-
quires judicious resource allocation that accommodates both
fine-grained and coarse-grained load fluctuations while also
being cost-effective.

Today’s online services are typically deployed as contain-
ers on VMs using container orchestration systems like Ku-
bernetes [6]. These systems enable resource provisioning
per-container and facilitate fine-grained resource manage-
ment, such as allocating CPU in milicores (one-thousandth
of a CPU core) to containers. However, it’s important to note
that in current VM provisions, charges are based on the full
allocated capacity, regardless of whether it is actively utilized
or idle.

Hotlnfra '24, November 3, 2024, Austin, TX, USA

100

Requests

500 1000 1500 2000 2500 3000 3500
Time (seconds)

(a) Load measured at 1 second granularity.

60 —— Normalized RPS
—— Normalized RPM

% Fluctuation

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

(b) Request arrival rate fluctuations from the median request rate. Fluctua-
tion at 1-minute resolution (red) and 1-second resolution (blue). Values are
normalized to their respective medians.

Figure 1. Twitter load trace over a one-hour period.

2.2 Fluctuating Load Patterns

One of the primary challenges in resource provisioning for
online services arises from fluctuating load patterns. Even
at a period of relatively stable load (e.g., several minutes on
a typical day), there exists considerable fine-grained load
fluctuation.

To illustrate this, we analyze a representative one-hour
long portion of Twitter’s load trace. Figure 1(a) (top-plot)
shows the load while Figure 1(b) (bottom plot) illustrates
the variability in load, using both one-minute (requests per
minute - RPM) and one-second (requests per second - RPS)
intervals. The values in the bottom plot are normalized to
their respective medians for the shown period.

At the one-minute granularity, the load appears relatively
steady, varying within 6% of the median. However, when the

same data is plotted at one-second resolution, sharp devia-
tions of up to 50% from the median load become apparent.
This insight reveals that allocating resources based on coarse-

grained measurements can overlook critical load fluctuations

and potentially lead to SLO violations due to inadequate re-

source provision. A similar phenomenon has recently been

highlighted in the production cluster of YouTube [13], indi-

cating that the problem is not specific to one trace or one
type of service. Thus, resource allocation for online services

must take into account fine-grained load variation to ac-

commodate the inherent variability in demand and ensure
adherence to SLOs.

Dehigama et al.

100
9 80

c
2 60
F=]

©
= Utilized CPU
5 40 Idle CPU
z --- Average CPU Utilization: 73.84%
O 20

% 500 1000 1500 2000 2500 3000 3500
Time (s)

Figure 2. CPU utilization over one hour. Green (bottom-
portion) denotes the utilized CPU fraction while the pink
(top-portion) denotes idle CPU time.

2.3 Resource Allocation and Utilization

Given the fluctuating nature of online services, allocating re-
sources to meet SLO targets without squandering money on
idle compute is a challenge. To demonstrate this, we deployed
a containerized toy application on a rented VM from AWS.
The application receives requests, does some busy work and
returns the response to the user. We profiled the application
by replaying the one-hour long load trace specified in Sec-
tion 2.2 to determine the exact CPU allocation required to
meet the SLO target at the 99th percentile latency. We set
the SLO target at five times the latency of a single request on
an otherwise-idle VM. The CPU allocation required to meet
this SLO target is referred to as Optimal CPU provisioning.
A CPU allocation lower than this optimum would result in
SLO violations (i.e., more than 1% of requests would violate
the latency target). A higher CPU utilization would result in
more CPU idle time and higher bills without helping SLO.
Figure 2 shows the CPU utilization over the period of
trace. Despite an optimal CPU allocation that leverages exact
knowledge of the load in the trace, on average only 74%
of the CPU time is effectively utilized, leaving 26% of CPU
resources wasted (highlighted in pink). This result highlights
that even under optimal resource provisioning, where the
future load pattern is known precisely and resources are sized
accordingly, significant resource under-utilization occurs
due to the fine-grained variability in the request stream.

2.4 Deficiencies of Existing Compute Types

In an ideal computing model, resources would be elastic
enough to perfectly accommodate fine-grained load fluc-
tuations, providing just enough compute to meet the SLO
without keeping CPUs idle in the (brief) periods of lower
load. Today’s VMs are far from this ideal; regular VMs can
take a minute or more to boot [3], while even fast-booting
VMs such as microVMs [8] can take a second or more to fully
come online and start serving requests. Given such bring-up
latencies, VMs cannot effectively cater to fine-grained load
variations.

Harmonizing Diverse Compute Resources for Efficiency

m=g== Cost for VM CPU Capacity
30 Cost for Serverless
=== Combined Cost
20 Cost efficient region
—~
@ 10 /
—
[%]
o 0
@]
o
>-10
-20
0 5 10 15 20 25

% Reduction in CPU Allocation / RPS Handling Capacity

Figure 3. Cost comparison of serverless and VM-based com-
pute classes for varying VM CPU allocation.

In principle, serverless computing can meet the elastic-
ity objective, particularly when instances are kept warm.
Serverless encourages fine-grained resource provisioning
with short-running tasks, small memory footprints and pay
for actual usage (unlike the pay-for-allocation with VMs).
Alas, for sustained usage, serverless compute is several times
more expensive than VMs, making it unattractive from a cost
perspective for sustained serving. Thus, the challenge is to
provide a compute substrate that can meet the fine-grained
elasticity demands of online services while capitalizing on
this elasticity from a cost-perspective.

3 Hybrid Compute for Peak Efficiency

In order to capitalize on the fine-grained load fluctuations
from both compute efficiency and cost perspectives, we make
the following critical observation. In a given coarser-grained
time interval (e.g., several minutes), the load on a typical
online service is comprised of two components: a base com-
ponent and an additional excess component. The base compo-
nent is the minimal load consistently observed at fine grain
during the coarser interval. For instance, in Figure 1(a), that
would be just over 40 RPS. The rest of the load in the coarser
interval is strictly above that and varies at a fine granularity.

Based on this observation, we argue that online services
are best accommodated with a hybrid deployment model that
combines two fundamentally different types of compute: the
base component of the load should be served on VM-based
instances that combine predictable performance with low-
and predictable pricing. The excess component is best served
on truly elastic instance types, such as serverless, that are
fast to scale and offer pay-per-use pricing.

4 Preliminary Evaluation

We present an opportunity study to demonstrate the poten-
tial of serving online loads with different types of compute
for elasticity and cost-efficiency. Toward that goal, we com-
pare a VM-only deployment, in which resources cannot be
scaled to accommodate fine-grained load variations (e.g., at

Hotlnfra "24, November 3, 2024, Austin, TX, USA

Optimal-VM

Realistic-VM

o
-

2 3 =—> ... 8 9
Costin USD cents

m Cost-VMCPU m Cost-Serverless

Figure 4. Total cost comparison across deployment models

1-second granularity) to a hybrid deployment that uses VMs
for a portion of the load and serverless for the excess. We
also study a serverless-only deployment using pre-warmed
instances offering fully elastic pay-for-use compute.

Configurations. We evaluate our proposed hybrid ap-
proach against two VM-based deployments. The first VM-
only scenario assumes optimal CPU provisioning (referred
to as the Optimal-VM), based on perfect knowledge of fu-
ture load patterns — a condition that is often impractical in
real-world environments. The second scenario is a realistic
configuration, where VM CPU capacity is overprovisioned
by 30% compared to an optimal CPU provisioning, to account
for unpredictable load variability. This strategy reflects com-
mon industry practices and ensures compliance with SLOs
during traffic surges [5, 14].

Methodology. For our evaluation, we utilized Amazon
EC2 t3.medium instances—one of the most common instance
types. In AWS, the cost for these VMs is set at 0.0208 USD
per vCPU per hour [4]. For the serverless component, we
employed AWS Lambda, which has a different pricing model
based on the execution time and memory usage of the func-
tions [7].

Results. We performed sensitivity analysis by gradually
lowering the Optimal-VM CPU allocation from its optimal
level. As we decrease the CPU allocation for the VMs, both
the cost of VMs and the maximum RPS that the VMs can han-
dle are reduced. While the VM load is reduced, the load on
serverless functions increases, which proportionately raises
the cost of the serverless component. We analyzed the com-
bined cost of the VMs and serverless functions to determine
the point at which cost savings are maximized. The results of
the sensitivity analysis are shown in Figure 3. In this analysis,
all values are normalized to their respective baseline values
and are presented as percentages. For the trace under study,
we find that the optimal cost point is achieved when CPU
allocation is reduced by 11.7% from the Optimal-VM config-
uration, resulting in a 7.5% overall cost reduction compared
to Optimal-VM cost.

Figure 4 presents a comparison of the total costs between
the proposed hybrid design, the Optimal-VM configuration,
the Realistic-VM configuration and a serverless-only con-
figuration. We find that the hybrid design can achieve cost

Hotlnfra '24, November 3, 2024, Austin, TX, USA

savings of up to 28.5% compared to the Realistic-VM config-
uration, where resources are allocated to maintain a safety
margin in the face of a variable load. A serverless-only con-
figuration is even more expensive, costing 8x more than
Hybrid, using today’s AWS pricing.

5 Conclusion

Online services exhibit significant load fluctuations at fine-
grained intervals, even when coarse-grained measurements
suggest stability. Traditional VM-based deployments neces-
sitate overprovisioning to handle peak demands resulting
in resource waste, while serverless computing offers elas-
ticity at a higher cost. We propose a hybrid approach that
combines VMs and serverless functions for solution that is
elastic, performant and cost-effective. The results demon-
strate that this hybrid model can achieve significant cost
savings, reducing expenses by up to 7.5% compared to an
optimally provisioned VM-only setup, and by 28.5% when
compared to a more realistic overprovisioned configuration.

References

[1] [n.d.]. Q&A with Jim Brikman: Splitting Up a Codebase into Microser-
vices and Artifacts. https://engineering.linkedin.com/blog/2016/02/q-
a-with-jim-brikman--splitting-up-a-codebase-into-microservices

[2] 2016. The Opportunities Microservices Provide at Uber Engi-
neering. https://www.uber.com/en-GB/blog/building-tincup-
microservice-implementation [Online; accessed 8. Jan. 2024].

[3] 2024. AMI types - Amazon Elastic Compute
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ComponentsAMIs.html#storage-for-the-root-device
accessed 9. Jan. 2024].

[4] 2024. AWS VM Instances cost. https://aws.amazon.com/ec2/instance-
types/t3/ [Online; accessed 27. Jan. 2024].

[5] 2024. Kubernetes Clusters Have Massive Overprovisioning Of
Compute And Memory. https://www.nextplatform.com/2024/03/04/
kubernetes-clusters-have-massive-overprovisioning-of-compute-
and-memory/ [Online; accessed 7. Sep. 2024].

[6] 2024. Production-Grade Container Orchestration. https://kubernetes.
io [Online; accessed 9. Jan. 2024].

[7] 2024. Serverless Function, FaaS Serverless - AWS Lambda - AWS.
https://aws.amazon.com/lambda [Online; accessed 11. Jan. 2024].

[8] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.
In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 419-434.
https://www.usenix.org/conference/nsdi20/presentation/agache

[9] TC Currie. 2017. Airbnb’s 10 Takeaways from Moving to Microser-
vices — thenewstack.io. https://thenewstack.io/airbnbs-10-takeaways-
moving-microservices/. [Accessed 08-01-2024].

[10] Jenny Qiu Hylbert and Steve Cosenza. 12 August 2020. Rebuilding
Twitter’s public API. https://blog.twitter.com/engineering/en_us/
topics/infrastructure/2020/rebuild_twitter_public_api_2020

[11] Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma
Da Silva. 2023. Sora: A Latency Sensitive Approach for Microser-
vice Soft Resource Adaptation. In Proceedings of the 24th Interna-
tional Middleware Conference (Bologna, Italy) (Middleware "23). As-
sociation for Computing Machinery, New York, NY, USA, 43-56.
https://doi.org/10.1145/3590140.3592851

Cloud.

[Online;

[12]

[13]

[14]

Dehigama et al.

Web Team. 2023. Microservices at netflix: Lessons for architec-
tural design. https://www.nginx.com/blog/microservices-at-netflix-
architectural-best-practices/

Bartek Wydrowski, Robert Kleinberg, Stephen M. Rumble, and Aaron
Archer. 2024. Load is not what you should balance: Introducing Prequal.
In 21st USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 24). USENIX Association, Santa Clara, CA, 1285-1299.
https://www.usenix.org/conference/nsdi24/presentation/wydrowski
Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. 2013. CPI2: CPU performance isolation for shared
compute clusters. In Proceedings of the 8th ACM European Conference on
Computer Systems (Prague, Czech Republic) (EuroSys ’13). Association
for Computing Machinery, New York, NY, USA, 379-391. https://doi.
org/10.1145/2465351.2465388

https://engineering.linkedin.com/blog/2016/02/q-a-with-jim-brikman--splitting-up-a-codebase-into-microservices
https://engineering.linkedin.com/blog/2016/02/q-a-with-jim-brikman--splitting-up-a-codebase-into-microservices
https://www.uber.com/en-GB/blog/building-tincup-microservice-implementation
https://www.uber.com/en-GB/blog/building-tincup-microservice-implementation
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-device
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-device
https://aws.amazon.com/ec2/instance-types/t3/
https://aws.amazon.com/ec2/instance-types/t3/
https://www.nextplatform.com/2024/03/04/kubernetes-clusters-have-massive-overprovisioning-of-compute-and-memory/
https://www.nextplatform.com/2024/03/04/kubernetes-clusters-have-massive-overprovisioning-of-compute-and-memory/
https://www.nextplatform.com/2024/03/04/kubernetes-clusters-have-massive-overprovisioning-of-compute-and-memory/
https://kubernetes.io
https://kubernetes.io
https://aws.amazon.com/lambda
https://www.usenix.org/conference/nsdi20/presentation/agache
https://thenewstack.io/airbnbs-10-takeaways-moving-microservices/
https://thenewstack.io/airbnbs-10-takeaways-moving-microservices/
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://doi.org/10.1145/3590140.3592851
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.usenix.org/conference/nsdi24/presentation/wydrowski
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.1145/2465351.2465388

	Abstract
	1 Introduction
	2 Motivation
	2.1 Modern Online Services & Deployment
	2.2 Fluctuating Load Patterns
	2.3 Resource Allocation and Utilization
	2.4 Deficiencies of Existing Compute Types

	3 Hybrid Compute for Peak Efficiency
	4 Preliminary Evaluation
	5 Conclusion
	References

