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1 Introduction and motivation

Training large language models (LLMs) presents new chal-
lenges for managing training data due to the ever-growing
sizes of models and datasets. To achieve high accuracy, state-
of-the-art LLMs train over trillions of tokens from aggre-
gated data collections such as RedPajama [7], Dolma [16], or
FineWeb [12]. For example, Meta’s L1ama-3-405B model is
trained on a corpus of 15 trillion tokens [9].

As data collections grow to include data with different
characteristics that come from different sources, manag-
ing the data and selecting which samples to use for train-
ing becomes time-consuming, tedious, and prone to errors.
When training an LLM, developers first collect training data
from various sources, such as Wikipedia, Common Crawl,
or ArXiv. They then clean the data, which typically involves
deduplicating, filtering, and applying classifiers to the data
samples (e.g., to obtain a toxicity score for each sample). Fi-
nally, for each training job, developers then need to select
and mix data samples, e.g., train on 50 % data from Wikipedia
and 50 % from movie subtitles. Training data may need to be
mixed based on a variety of characteristics. For example, in
addition to satisfying source data proportions (Wikipedia vs.
movie subtitles in the previous example), we may also want
the training data to be 80 % in English and 20 % in German.

Selecting the right proportions of data with particular
characteristics (e.g., language, topic, source) for training
is critical for model performance [5, 18, 21]. Algorithms
like DOREMI [18], SLiMPAJaAMA-DC [15], or the data mixing
laws [21] find the best mixture by trying out combinations on
a small proxy model. Xie et al. [18] show that by optimizing
data proportions from different sources in The Pile [8] with
DoREM1, they reach the same accuracy as using the default
data proportions while taking only 38.4 % of the training
steps. When training for the same number of steps as the
baseline, one-shot accuracy increases by 6.5 percent points.

While efficiently managing and mixing data collections
is critical, we observe several challenges due to the lack
of system support. We lay out these challenges and then
present MIXTERA, a work-in-progress system supporting
data management in the context of LLM training.

Challenge 1: High engineering effort for data prepa-
ration. The current approach for preparing data mixtures
involves many manual offline steps with general-purpose
data processing and scripting frameworks. Developers typi-
cally leverage general-purpose data processing frameworks
like Spark [22] or Beam [2] to clean data offline. Afterwards,
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they spend a lot of time writing error-prone ad-hoc scripts
to mix the cleaned data for each training job. Each training
job with a new mixture requires a new copy of the dataset
and a new mixing script. Since mixtures are prepared offline,
training a model with a new mixture requires waiting for
the data mixing pipeline to finish executing on the whole
source datasets first. This makes it difficult to get a quick
sense of how a data mixture will impact model training when
exploring different mixing policies.

Challenge 2: Lack of data management system. Cur-
rent database management systems are not natively built for
LLM data [17]. Using a DBMS for LLM data would require
ML developers to define table schemas and to orchestrate
dataflow from the DBMS to the model training, in addition to
administration overhead to operate the DBMS itself. Hence,
most LLM training data is stored and managed as files with-
out a proper data management system, which can lead to
storage overhead, performance bottlenecks, and consistency
issues. Both the source data and mixed training set are typi-
cally stored as jsonl (e.g., RedPajama [7]) or parquet (e.g.,
FineWeb [12]) files in a shared filesystem. By the nature of
these formats, each sample is stored as a row in the file and
the sample-level metadata is stored as a field in the row.
When the dataset is extensively labeled with classifiers, the
metadata can take up to 30 % of the storage space [6], and is
duplicated for each copy of the data generated in the mixing
process. This leads to high storage overhead.

Furthermore, filesystems do not provide an efficient inter-
faces to query data. As a result, if developers want to find all
data that satisfies a condition, they have to scan the entire
dataset, which can lead to performance bottlenecks.

The lack of data management system also makes it hard to
guarantee consistency. For example, when a data collection
is re-processed with a new personal identifiable information
(PII) removal pipeline that classifies more data as PII, it is
important but difficult to guarantee that old data mixtures
which may contain PII data are removed. Lineage tracking,
i.e., tracking which models are trained with which data, is
also not supported by the filesystem.

Challenge 3: Rapidly evolving research. How to train
the best model on a given dataset is an active area of re-
search, with many new techniques being developed. There
are many open questions, such as with which granularity to
guarantee data mixtures. DoReMi guarantees the mixture
within a batch [18], but a larger window may be sufficient.
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Furthermore, it might be useful to specify hierarchical mix-
tures across arbitrary properties, e.g., specify a proportion
between Wikipedia and movie subtitles, and between English
and German. The order in which data is fed to a model also
impacts accuracy. Curriculum learning pre-defines a data or-
der. Xu et al. [19] order samples from easy to hard to improve
alignment. Multilingual models are often first trained on Eng-
lish data, and then data from other languages is included
in the mixture [14, 20]. Beyond such pre-defined schedules,
there is also work on adapting the data mixture to the model
training dynamics, e.g., by increasing the weight of data do-
mains which have high loss. SKILL-1T is a framework to order
“skills” based on model feedback [5]. Albalak et al. [3] use
a multi-armed bandit strategy to dynamically change the
mixture. However, unfortunately even for researchers who
are familiar with the latest techniques, implementing them
in a training pipeline is a painful, tedious, and error-prone
task. This hinders the adoption of new methods and makes
researching, reproducing, and comparing different strategies
difficult.

2 MixTERA: A lightweight LLM training
data lake

We are currently building MIXTERA, a lightweight data lake
for distributed LLM training.

2.1 Design Goals

Based on the aforementioned challenges, we identify design
goals for an LLM training data management system:

Goal G1: The system should implement a centralized data
layer that users can conveniently and declaratively query
based on metadata. During training, the data should be
streamed on-the-fly adhering to the mixture.

Goal G2: The system needs to be lightweight, i.e., not
require many components to set up and be easily integratable
into existing LLM training setups.

Goal G3: The system should support adjusting the mix-
ture dynamically during the training by offering the user
callbacks to adjust the mixture.

Goal G4: While being user-friendly and flexible, the sys-
tem needs to ensure high-throughput, even in distributed
training, despite streaming data over the network.

2.2 MIXTERA design

Inspired by the Lakehouse architecture [4], MIXTERA is as a
lightweight, read-only layer on top of training data collec-
tions (see Figure 1). For each sample, MIXTERA stores user-
defined properties (e.g., language, topic, or source dataset).
It does not actively reorganize or modify the files on disk.
It can be easily integrated into existing setups, such as col-
lections of jsonl files, and allows for declarative queries
(G1). It returns a stream of chunks, which contain pointers
to samples conforming to the mixture specified in the query.
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Figure 1. MIXTERA System Overview

client = MixteraClient("127.0.0.1", 8080)
job_id = "test_job"
query = Query.for_job(job_id).select(("license","==","CC"))

mixture = StaticMixture(

MixtureKey({"language": ["JavaScript"]l}): 0.7,
MixtureKey({"language": ["HTML"]1}): 0.3

chunk_size=1024

)

gea = QueryExecutionArgs(mixture=mixture, num_workers=4,
dp_groups=1, nodes_per_group=1)

rsa = ResultStreamingArgs(node_id=0, dp_group_id=0,

job_id=job_id)
MixteraTorchDataset(client, query, rea, rsa)
torch.utils.data.DatalLoader(ds, batch_size=1024,
num_workers=4)

ds
dl

for batch in dl:
print(batch)

Figure 2. An example query using MIXTERA.

Due to MIXTERA’s training framework agnostic interface,
the samples can be directly fed into any training pipeline.

Users interact with MIXTERA in two stages. First, they
register datasets in the system and add properties of the sam-
ples to populate the database. The properties can be obtained
from the source files themselves (e.g., which sub-dataset the
sample stems from) or by running classifiers (e.g., to identify
the language or toxicity). MIXTERA has a programmatical
interface for this step, and we plan to implement a CLL

In the second phase, users submit SQL-like queries and
run trainings. In Figure 2, we show a minimal example for
a query which statically filters out only creative commons
data, and then mixes HTML and JavaScript data in a 70:30
ratio. MIXTERA abstractions such as MixteraTorchDataset
take care of submitting the query and obtaining the samples
without needing to worry about correctness in distributed
training (G2, G4). The user only needs to provide the ID of
the node and its data parallel group, which can be obtained
from the training framework like nanotron.
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Figure 3. Data flow in MIXTERA.

Data flow and overview. MIXTERA comes as a Python
package. It is independent of the training framework as it
provides a standard PyTorch [11] IterableDataset abstrac-
tion. In distributed training, the MIXTERA server runs on a
node and each training node runs MIXTERA client instances.
MIXTERA can also be used as a Python module without net-
working in case of single-GPU training,.

Figure 3 shows the basic dataflow we envision for the
client-server setup. The client (e.g., a training process) sub-
mits a query to MIXTERA. The query is executed at the server
in two phases. In the first phase, MIXTERA applies static fil-
ters from the query to get a query result with all matching
samples. In the second phase, the server starts distributing
chunks of that query result to the client(s). A chunk is a col-
lection of pointers to samples in files. These pointers tell the
receiving client which samples in the file to consume. The
server generates chunks according to the current mixture, i.e.,
it iteratively cuts off pieces of the overall query result such
that the samples in the chunk follow the intended mixture.
The server ensures that the chunks are distributed correctly,
i.e., tensor- and pipeline parallel stages receive the same
input data.

Having received a chunk, the clients then fetch the data
based on the pointers in the chunk. The files that the chunks
point to can either be local, or on a network drive, or poten-
tially even cloud storage. The data can also be tunneled via
the server, e.g., if it is only available on a server-local disk.

Why store metadata only? We opt to implement central-
ization (G1) on a metadata level: the index structure stores
which samples in which files have which properties. We do
not store the samples themselves within MixTERA. Distribut-
ing chunks containing pointers instead of actual sample
payloads has several advantages. First, we want to be flexible
and not force users to actually store the data in one central
location (G2), although we recommend it for consistency.
This approach allows users to store data in their location of
choice (e.g., an object store, an NFS, or on each machine)
and does not require the MIXTERA server to ingest the data.
Second, the pointer-model reduces the network load in case
the files are on a local disk at each node. Third, we do not

force our own file structure on the users and allow for easy
adoption on existing data collections (G2). A disadvantage is
that, since MIXTERA is a read-only layer, we cannot optimize
the storage layout of the original data.

2.3 MIXTERA implementation

We briefly discuss how we implement different parts of Mix-
TERA’S current prototype.

Underlying database. We initially started out building
MIXTERA with custom Python indices. However, they turned
out to be too slow for large datasets. MIXTERA now uses
DuckDB [13] as an underlying database. DuckDB runs in-
process and can be seemlessly embedded into a Python ap-
plication. It satisfies goal G2, as it does not have any setup
overhead, and to users of MIXTERA, it is completely trans-
parent. At the same time, DuckDB allows to execute queries
very fast. MIXTERA indexes every sample in the dataset as a
row in a table, assigning it a unique sample ID, and storing
user-defined properties, such as language or topic.

Query execution and chunk generation. In the first
step of query execution (static filtering), MIXTERA generates
a selection SQL common table expression (CTE) based on
the filters. Then, it generates a query using that CTE and
windowing functions to obtain a list of intervals of samples.
For example, if samples x to y all share the same proper-
ties, DuckDB will return an interval (x, y) together with its
properties. We generate a data structure from this result
called a ChunkerIndex, from which we can can efficiently
slice off chunks according to the mixture. Since we imple-
ment the chunking as an iterator, the mixture can be updated
on-the-fly.

Server and chunk distribution. The server distributes
chunks via TCP and asyncio. It caches chunks until all nodes
in the same data parallel group have consumed it. This is
important, since all nodes within a data parallel group need
to read exactly the same data in exactly the same order.

Client-side reading. MIXTERA abstracts different file
formats (e.g., jsonl, parquet or Crossaint [1]) and file
systems (i.e., S3 or local filesystem). We implement multi-
threaded reading from files, while having to ensure mixture-
correct reading (batches might be smaller than chunks) and,
importantly, reproducibility across nodes, as each node needs
to yield samples in exactly the same order.

2.4 Outlook

We are currently benchmarking MIXTERA’s training through-
put and comparing to other implementations, such as hug-
gingface datasets. We are testing our design’s scalability to
see whether MIXTERA’s client-server architecture is suffi-
cient to avoid data stalls. We plan to implement a callback-
based feedback loop for dynamically adjusting the mixture,
such as in SKILL-IT [5]. In the long term, we also aim to sup-
port multi-modal data, which brings additional challenges,
such as image decoding and augmentation [10].
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