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Abstract
Transformer-like architectures with softmax attention have
demonstrated exceptional performance in language model-
ing by capturing long-term token dependencies and ensuring
efficient training. However, their scalability is constrained
by the quadratic computation costs incurred during infer-
ence. To mitigate this issue, subquadratic models with SSMs
and linear attentions have been introduced; however, such
models achieve lower accuracy than Transformers. In this
work, we aim to get the best of both worlds: we seek to
convert carefully selected attention layers in a Transformer
to gated linear attention layers, without sacrificing accu-
racy. Specifically, we analyze the performance benefits of
subquadratic models and propose a distillation method that
progressively converts the attention layer to a gated linear
attention layer [25]. While selecting layers to convert, we
leverage downstream task accuracy as a criterion to mini-
mize the accuracy loss caused by conversion. Our evaluation
demonstrates that task accuracy is an effective criterion that
can be used in adaptive distillation.

1 Introduction
With the success of language modeling with transformer-
based architecture, many transformer-based large language
models (LLMs) have been released and deployed for various
tasks such as code generation [16], translation [7], question-
answering [5, 20], and text summarization [11]. The superior
performance of transformer architecture compared to alter-
native architectures (e.g., RNN or LSTM) is rooted in the
attention layer, which calculates the relevance or impor-
tance of each token to another and is known as the attention
score. By directly calculating the attention score for each
pair of tokens, transformer-based architecture can better
capture global context and long-range dependencies over
long sequences without suffering from issues like vanishing
or exploding gradient problems. Besides the attention layer’s
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efficacy in language modeling compared to its alternatives,
it is amenable to parallelization by processing all tokens of
inputs simultaneously, leading to significantly fast training.
Yet, the scalability of the attention layer remains a chal-

lenge, as the computation complexity increases quadratically
to the sequence length (i.e., the number of tokens in a se-
quence). This computation cost becomes a burden, especially
in the inference, where parallelization is unfeasible due to
the iterative generation in the decoding phase. Unlike train-
ing where all tokens are provided at once, only one token
is generated and processed at a time during the decoding or
generation steps, blocking parallel computation. Moreover,
the runtime memory for storing the intermediate states (e.g.,
key and value vectors in attention mechanism) known as KV
Cache [13] also grows proportionally to the sequence length
and takes a significant portion of runtime memory [6].
To mitigate the scalability problems during inference, re-

cent work studied the linearization of the attention layer
by approximating the softmax function with learned kernel
functions [4, 19], replacing the attention layer with RNN
or SSM-based layers which have linear time complexity
to the sequence length and maintain constant intermedi-
ate states, or using mixed architecture of transformer and
RNN or SSM [9, 22]. In particular, distillation-based meth-
ods [1, 18, 23, 26] have gained attention for leveraging the
advantages of transformers during training and linear at-
tention during inference. While early works showed decent
accuracy in fully linearized models, knowledge distillation
as an optimization method often results in some inevitable
loss of accuracy.
In this work, we build upon the principles of distillation-

based approaches and introduce a disciplined framework for
knowledge distillation. Our framework progressively trans-
fers the representations of the quadratic attention layers in
pre-trained transformer models to linear attention layers,
based on each layer’s sensitivity to distillation. Specifically,
we evaluate the impact of each layer on the model’s perfor-
mance and use this metric to selectively convert layers. By
adjusting the conversion rate, our framework offers flexibil-
ity in balancing inference efficiency with model performance.
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It also supports service-level objectives (SLOs) for latency
by automatically determining the conversion rate when a
target latency is given.

2 Method
2.1 Overview
In this work, we propose a framework for systematically se-
lecting which layers to convert from self-attention to linear
attention. Unlike prior approaches [1, 18, 23, 26] that convert
all layers to linear attention to maximize performance bene-
fits, our framework offers flexibility by adaptively adjusting
the conversion rate to balance system performance and accu-
racy. We utilize a gated linear attention architecture [25] for
this conversion, which incorporates data-dependent features
similar to selective SSMs (e.g., Mamba [23]) and is known
for improved throughput.
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Figure 1. By approximating softmax function𝜎 with𝜙 and𝜓 ,
we can calculate self-attention in order of 𝜙 (𝑞) · (𝜓 (𝐾)𝑇 ·𝑉 )
by making use of the associative property of matrix multipli-
cation, reducing the computation complexity from𝑂 (𝑁 2 ·𝑑)
to 𝑂 (𝑑2 · 𝑁 ). Blue text indicates the shape of the tensor and
red text indicates the computational complexity of each ma-
trix multiplication. 𝑁 is sequence length and 𝑑 is hidden
size. While 𝑑 is deterministic for a given model size, 𝑁 scales
based on the user’s input.

.
For a given pre-trained transformermodel with self-attention,

we first train kernel functions 𝜙 and 𝜓 to approximate the
softmax operation, such that 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞𝐾𝑇 ) ≈ 𝜙 (𝑞)𝜓 (𝐾)𝑇 [2,
4]. This approximation allows the computation of 𝐾 ×𝑉 to
be performed before 𝑞 ×𝐾 due to the associative property of
matrix multiplication, thereby reducing the computational
cost from𝑂 (𝑁 2 ·𝑑) to𝑂 (𝑑2 ·𝑁 ) (Figure 1). We use knowledge
distillation to train 𝜙 and𝜓 , as detailed in §2.4, rather than
training from scratch.
The learned kernel functions enable the conversion of

each transformer layer into a gated linear attention layer.
Our conversion approach is layer-wise, allowing us to choose
between a transformer layer and a linear attention layer for
each layer. Based on the selection criterion analysis discussed
in §2.2 and target service-level objective discussed in §2.3,
we select 𝑛 layers out of 𝑁 total layers to convert to linear
attention, resulting in 𝑛 linear attention layers and 𝑁 − 𝑛
transformer layers.

2.2 Analyzing Selection Criterion
In this section, we introduce various criteria for layer selec-
tion. Specifically, we explore three options: layer position,
attention distribution, and layerwise sensitivity to down-
stream tasks. We discuss how each criterion influences the
choice of model architectures and their impact on overall
performance.
Layer Position: Early and late layers in a model often aggre-
gate global information and might benefit from the sequen-
tial information captured by RNNs (e.g., linear attention). In
contrast, middle layers typically focus on detailed context
by computing pairwise relationships between tokens, where
self-attention mechanisms are more effective [4, 8].
AttentionDistribution:Analyzing attentionweights across
layers can help identify which layers have more focused and
meaningful attention distributions. Layers with less focused
attention might benefit more from RNN-based mechanisms
that excel in capturing sequential dependencies [14, 26].
Layerwise Sensitivity: Our conversion approach operates
on a per-layer basis, allowing us to measure sensitivity by
replacing one layer with the converted layer at a time. This
sensitivity can be assessed using downstream task accuracy,
providing a more direct measure of how each layer responds
to the conversion.
In our evaluation (§3.3), we compare the performance of

each criterion when applied during the conversion process.

2.3 Determining Conversion Rate
Serving systems often operate under specific service-level
objectives (SLOs). In this work, we use inference latency and
peak memory as the primary SLO. Since the computations
in transformer and gated linear layers are deterministic and
determined by the sequence length, the latency and mem-
ory can be efficiently interpolated by performing a single
inference run at each end of the conversion spectrum. This
approach enables us to identify the optimal conversion rate
that satisfies the target latency or memory budget. Given
a latency budget 𝑙𝑎𝑡𝑏 , we measure the latency 𝑙𝑎𝑡0 using a
base transformer model and 𝑙𝑎𝑡1 using a fully linear model.
Note that for measuring 𝑙𝑎𝑡1, exact model parameters are
not required; random parameters can be used solely for la-
tency measurement. The maximum conversion rate 𝑟 can
then be obtained using the following equation (Equation 1).
Similarly, a conversion rate can be determined for a given
memory budget.

𝑟 = argmax {𝑟 | lat𝑏 ≥ |𝑟 · lat0 + (1 − 𝑟 ) · lat1 |} (1)

2.4 Distilling Self-attention to Linear Attention
Our distillation process operates on a per-layer basis, where
we train kernel functions by matching the input and output
of each layer. We utilize 512 sequences from the C4 training
dataset, collecting queries, keys, values, and outputs from
each layer.
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We then align the query vector 𝑞 and 𝜙 (𝑞), as well as
the key vector 𝑘 and𝜓 (k). For𝜓 and 𝜙 , we use multi-layer
perceptron (MLP) and GELU following the spirit of prior
work [2, 26] (Eq. 2). The global objective is to minimize the
l2 distance between the attention output, 𝑎𝑡𝑡𝑛_𝑜𝑢𝑡 , and the
output of the gated linear attention, 𝑜𝑢𝑡 . The combined loss
function is shown in Eq 3.

𝜙 (𝑞) =
��𝜎𝜙 (

𝜎𝜙 (𝑞𝑊𝜙,1)𝑊𝜙,2
) ��

𝜓 (𝑘) =
��𝜎𝜓 (

𝜎𝜓 (𝑘𝑊𝜓,1)𝑊𝜓,2
)
𝑊𝜓,3

�� (2)

L = ∥attn_out − out∥+𝜆1 · ∥𝑞 − 𝜙 (𝑞)∥+𝜆2 · ∥𝑘 −𝜓 (𝑘)∥
(3)

For training, we employ the Adam optimizer.We only train
parameters in 𝜙 and𝜓 for 40 epochs and do not change the
model parameters. The learning rate is initialized at 0.0001
and follows a cosine annealing schedule. Note that the train-
ing is done offline and one-time cost, and no cost is added
during the inference. (𝜆1, 𝜆2) is hyper-parameter and set to
(1𝑒 − 4, 1𝑒 − 2)
Once converted, the linear attention mechanism can com-

pute the attention layer in a recursive manner, similar to
RNNs. We employed the Gated Linear Attention architec-
ture [25], which incorporates a data-dependent gate that
selectively weighs hidden states based on the input. At time
step 𝑡 , the hidden state 𝑆𝑡 is updated by applying theHadamard
product between the data-dependent gate 𝐺𝑡 ∈ (0, 1) (𝑑×𝑑 )
(for hidden size 𝑑) and previous hidden states 𝑆𝑡−1, along
with the outer product of the transposed key vector 𝑘𝑇𝑡 and
value vector 𝑣𝑡 . Output of attention layer 𝑜𝑡 is achieved by
multiplying query vector 𝑞𝑡 to the hidden states (Eq. 4).

𝑆𝑡 =𝐺𝑡 ⊙ 𝑆𝑡−1 +𝜓 (𝑘𝑡 )𝑇 𝑣𝑡
𝑜𝑡 =𝜙 (𝑞𝑡 ) · 𝑆𝑡

(4)

3 Evaluation
3.1 Experimental Setup
In our experiments, we used a single A100 GPUwith 80GB of
memory. For the base transformer model, we used Llama2-7b
model [21] and distilled it into gated-linear-attention [25].
For distillation, we used 512 sequences of the C4 training
dataset [15], and the hidden layer size of the learned kernel
is set to 512. To evaluate the model accuracy, we used long-
text summarization tasks on two datasets (CNN/Dailymail
Dataset [3, 17], Xsum Dataset [12]) and measured ROUGE
score [10], which measures the overlap of unigrams (individ-
ual words) between a generated text and a reference text.

3.2 System Performance
In this section, we measure the benefits of conversion from
transformer to linear attention. Figure 2 shows the infer-
ence latency and peak memory as a function of conversion
rate. Latency is measured in an isolated environment while

Figure 2. Figures show latency (left) and peak memory us-
age (right) by conversion rate. 0% shows base transformer
model and 100% shows the fully linear attention model. Both
metrics show a linear decrease with increasing layer con-
version, suggesting that this can serve as a primary method
for determining the conversion rate for given system con-
straints.

generating 1024 tokens given a 1024-token prompt after 20
warm-up generations. Memory includes space for inputs,
intermediate states, and model parameters.

The results demonstrate that inference latency and mem-
ory usage have linear relationship with the conversion rate,
suggesting that this method could provide a cost-effective
way to determine the optimal rate. Given a latency or mem-
ory budget, our framework selects 𝑁 × 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 lay-
ers based on the criteria outlined in Section §2.2, and loads
them into memory, ensuring no additional cost is incurred
during inference.

3.3 Efficacy of Conversion Criteria

Figure 3. Figure shows ROUGE-1 scores for long docu-
ment summarization tasks across CNN/DailyMail and XSUM
datasets with different selection criteria. The upper row
compares the efficacy of selecting early (exclude-0th), early
(include-0th), mid, and late layers, while the lower row
compares position-based (late), entropy-based, and task-
accuracy-based selections. Higher y-axis values indicate bet-
ter performance. The red dotted line plots the full accuracy
achieved by the base transformer model.
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In this section, we evaluate the various selection criteria
outlined in §2.2. First, we examine the effectiveness of layer-
position-based conversion by categorizing the layers into
three groups: (1) "early" layers (0-10), (2) "mid" layers (11-20),
and (3) "late" layers (21-31). Within each group, we picked
random layers to convert and assessed the performance of
the converted model (Fig 3 (a)-(b)). Although previous stud-
ies suggest that RNNs could be effectively utilized in early
and late layers [4, 8], our experiments reveal that randomly
selecting layers for conversion can lead to significant perfor-
mance degradation. In particular, converting certain layers
(e.g., the 0-th layer) failed in performance.

To establish a disciplined selection process, we analyze
the attention distribution and layer-wise sensitivity to the
downstream task. Specifically, we compute the entropy of
the attention scores [14] as a measure of attention distribu-
tion, and task accuracy as a measure of layer-wise sensitivity.
The results are shown in Figure 3 (c)–(d), suggesting that
task-accuracy-based layerwise sensitivity is more effective
as a selection criterion. While entropy is convenient as it
can be computed before kernel training, the results indicate
that using entropy as a selection criterion is less effective
than task-accuracy-based sensitivity. This is because certain
layers are critical to performance when converted, and this
stems from the training method. Therefore, it cannot be cap-
tured in the baseline model before training.Selecting random
late layers consistently performs well, but this approach is
not generalizable when more layers need to be selected after
all late layers have been chosen (e.g., after selecting layers
21-31, what should be selected next?)

4 Conclusion and Future work
In this work, we present a distillation framework that con-
verts a pre-trained transformer model into a gated linear
attention model for more efficient inference. Unlike fully con-
verting all layers into linear layers, our approach performs a
layer-wise conversion, providing flexibility in balancing sys-
tem performance and accuracy. This method also supports
operation under a latency or memory budget, where the
conversion rate is determined through interpolation. To min-
imize accuracy loss, our framework carefully selects which
layers to convert based on their layer-wise sensitivity.
While this work adopted a distillation method that only

trains kernels and gating layer instead of model parame-
ters, a fine-tuning based approach [24] can also be used for
conversion. We use latency as the primary target, other ob-
jectives such as aggregated accuracy or throughput could be
considered as alternatives. Achieving these alternative goals
may require a more in-depth analysis of resource usage and
the development of feedback mechanisms to compensate for
accuracy losses during conversion. We leave this exploration
for future work.
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