
Revisiting Distributed Programming in the CXL Era
Teng Ma1 Mingxing Zhang2 Kang Chen2 Jialiang Huang2 Zheng Liu1 Yongwei Wu2

1Alibaba Group 2Tsinghua University
Abstract
As Moore’s Law slows, distributed programming is increas-
ingly prioritized to enhance system performance through
horizontal scaling. This paper revisits the paradigms of mes-
sage passing (MP) and distributed shared memory (DSM)
regarding evolving interconnect technologies, particularly
Compute Express Link (CXL). DSM’s unified memory space
offers simplicity in distributed programming by abstracting
data communication complexities, but MP remains more
prevalent due to its flexibility and programming-friendliness.
We explore the memory sharing and pooling of CXL, which
enable low-latency, coherent data transfers between mul-
tiple hosts. We address the complexities involved in man-
aging shared states, particularly in the context of partial
failures—termed Partial Failure Resilient DSM (RDSM). Thus
we propose a memory management system named CXL-
SHM that leverages reference counting and distributed vec-
tor clocks for robust memory management. To be compatible
with the message passing model, we introduce a CXL-based
RPC named HydraRPC, which utilizes CXL shared memory
to bypass data copying and serialization.
1 Distributed Systems with CXL
From Ethernet to RDMA to CXL. The shift from Ether-
net to Remote Direct Memory Access (RDMA), and now
to Compute Express Link (CXL) [2], represents a major ad-
vancement in communication technologies. The adoption of
RDMA has vastly revolutionized data centers, significantly
affecting the design of distributed systems. It has notably
lowered latency from over 100 microseconds to the millisec-
ond level, while providing a one-sided memory read/write
interface that greatly reduces overhead on the remote side.
Even with the new generation ConnectX-6 RDMA NIC,

the latency of RDMA is still over 2𝜇𝑠 . The subsequent intro-
duction of CXL represents the latest advancement, aiming to
provide high-speed and, critically, coherent data transfer be-
tween different nodes. For instance, DirectCXL [5] connects
a host processor with remote memory resources, enabling
load/store instructions with a remote CXL memory access
latency of approximately 300 nanoseconds.
CXL proposesmemory pooling, enabling the creation

of a global memory resource pool, thus optimizing the over-
all utilization of memory. This is achieved through CXL
switch [3] and memory controller that facilitates dynamic
allocation and de-allocation of memory resources. Pond is
the first full-stack memory pool that meets the requirements

The 2nd Workshop on Hot Topics in System Infrastructure (HotInfra’24), co-
located with SOSP’24, November 3, 2024, Austin, TX, USA

Table 1. Message Passing v.s Distributed Shared Memory
Message Passing Distributed SHM New Features

Interface Send/Recv Load/Store/CAS Finer-grained API

Com/Mem Rela-
tionship

Tightly Coupled Separation Higher Utilization

Communication
Paradigm

Pass-by-Value Pass-by-Reference Faster Exchange

Data/State Ar-
chitecture

Share Nothing Shared Everything Cheaper Migration

of cloud providers. It deploys a CXL-based memory pool to
the Microsoft Azure cloud platform [10]. Currently, most
mainstream cloud service providers have announced their
plans to support the CXL-based memory pool.

Moreover, the forthcomingCXL 3.0/3.1 [1] version promises
memory sharing, which would allow the same memory re-
gion to be mapped across multiple machines. In such a setup,
the hardware would automatically manage cache coherence
for concurrent accesses from different machines, essentially
implementing a hardware-based shared memory model. This
development opens up exciting possibilities for the future of
distributed systems.
Message Passing v.s, Distributed Shared Memory. Since
the restrictions of the Von Neumann architecture, individual
machines have limited resources and thence poor scalability.
Distributed systems play a vital role in the challenge of scal-
ability. For distributed programming, two main paradigms
prevail: message passing (MP) and distributed shared mem-
ory (DSM), the debate over MP versus DSM has continued
from the 1960s. DSM is designed to be more ease-of-use be-
cause it provides a unified memory space that abstracts away
the complexities of explicit data communication. This design
allows for programming distributed applications almost as
straightforwardly as multi-threaded applications. However,
in practice, the less intuitive MP model is more commonly
used than DSM. This preference is often attributed to the
assumption that the high cost of remote communication
significantly hampers the efficiency of DSM.

However, rapid advancements in networking and intercon-
nect technologies have profoundly impacted our understand-
ing of this field. Especially with the emergence of Compute
Express Link (CXL), we are presented with an opportune
moment to revisit our perspectives on traditional distributed
programming paradigms.
Revisit Distributed Applications in CXL era. Even now
CXL’s hardware implementation is still catching up to its
ambitious specifications. It is a good time to revisit the
distinctions between MP and DSM in the context of the
forthcoming CXL era. As shown in Table 1, we understand
their differences and identify optimal application scenar-
ios. At first glance, the principal difference between these



paradigms is the interface they utilize. MP relies on a tradi-
tional Send/Receive interface, while CXL is better aligned
with DSM by providing a fine-grained remote load/store in-
struction set. Message passing systems assume a tightly cou-
pled architecture, where each node can only access its local
memory. In contrast, CXL-enabled DSM systems naturally fit
into a disaggregated architecture that separates compute and
memory resources, allowing for more flexible and efficient
resource utilization. For data communication, message pass-
ing generally involves data payloads being copied from one
node to another, a pass-by-value approach. DSM needs to ex-
change references, embodying a pass-by-reference method.
This facilitates access to only the necessary data subparts and
enables in-place updates. Finally, the DSM’s global memory
space accessibility implies a shared-everything data/state
architecture. This is particularly beneficial for quickly mi-
grating workloads. For instance, resolving load imbalances in
a shared-nothing architecture necessitates heavy data repar-
titioning, whereas in a shared-everything setup, only small
metadata representing data partition ownership needs to be
exchanged.
In summary, CXL-based DSM excels in situations that

need high flexibility. CXL architecture naturally supports
this flexibility by offering both a dynamic and efficient way
to allocate and access remote memory resources. This is es-
sential for systems that need to scale quickly and efficiently.

2 CXL-based Distributed SHM Paradigms
Challenges. Nevertheless, transitioning to the CXL-based
DSM paradigm isn’t just about leveraging advancements in
hardware. It involves embracing a unified memory space
that hosts shared states, which in turn enables quicker data
transfers and migrations while uncoupling computing from
memory for enhanced scalability. However, managing these
shared states also presents more complexity than the con-
ventional shared-nothing architecture, given the potential
for concurrent access and the partial failures that may arise.
To wrap things up, we can see that the root of our chal-

lenges stems from the fact that, in our DSMmodel the shared
distributed objects and the clients that hold their references
have separate failure domains. Thus, it allows clients to freely
join, exit, or even face failures during the process, and these
clients can arbitrarily create, release, and even exchange ref-
erences to remote memory spaces. While very user-friendly,
this flexibility comes with a significant challenge in memory
management. We summarize this new model as Partial Fail-
ure Resilient DSM (RDSM). To distinguish it from full failure
scenarios where all clients crash simultaneously. Handling
full failures might seemmore straightforward, but we believe
tolerating partial failures is crucial to making DSM usage
more widespread.

DSM Model of CXL-SHM. To address these challenges,
we propose CXL-SHM [15]. It uses reference counting to

reduce the manual workload involved in reclaiming remote
memory that has been allocated. However, a standard refer-
ence counting system is not robust against system failures.

CXL-SHM offers a unified memory address space for host-
ing shared states. These shared states facilitate faster transfer
and migration and decouple compute and memory, which
jointly lead to better scalability. However, the management
of memory becomes more challenging due to possible con-
current access and partial failures arising from these shared
states.
Fault Tolerance of CXL-SHM. To further demonstrate

this problem, here we divide the procedure of automatic ref-
erence count maintenance into two sub steps, Which will
help us to demonstrate the corner failure cases. For attaching
a reference, we first need to increase the reference count.
Then we link the reference by setting its value to the address
of the referenced space, which we call the modification ref-
erence step. Similarly, detaching a reference also involves
only two steps, decreasing the reference count and setting
the value of the reference to NULL.
However, a basic reference count system cannot handle

failures. And this is where things get tricky. Although we
have only two simple steps to maintain the reference count,
the order matters. We run into issues if there is a crash be-
tween these two steps. For instance, if we increment the
reference count but do not set the reference value because of
a failure, we will encounter a memory leak. A typical solu-
tion is to use the lock to make the modified reference count
idempotent and record this modified count in the redo log
for recovery. Unfortunately, it is only suitable for full failure
scenarios where all clients exist simultaneously. Cascade
blockage will be an issue if a client crashes after obtaining a
lock.
To overcome this problem, we replaced lock operations

from the original algorithm with non-blocking maintenance
of a distributed vector clock. It can help us maintain a global
timeline asynchronously. Additionally, we have optimized
the modifying reference count operation to utilize the CAS
instruction for atomic modification of the reference count
and additional meta-information. This includes the ID of the
last client that successfully modified this field, as well as
the local era of that client of this maintenance transaction.
This operation serves as the commit point for the entire
transaction, ensuring that the modifying reference count
step is never re-executed. During recovery, the subsequent
steps will be redone blindly, as they are naturally idempotent.

3 CXL-based Message Passing Paradigms
Challenges. Remote Procedure Call (RPC) is an essential
technology of MP-based distributed programming [14]. It
permits functions to run on a remote server as if they were
local calls. It simplifies the interaction between client and
server by abstracting the intricacies of message passing. RPC

2



Node1 Node 2

Recv Resp

Send Req

Recv Req

Send Resp

rpc_req

rpc_res

Pass-by-Value RPC

No Data Copy -> 4x Pass-by-value RPC Memory

rpc_req

rpc_res

rpc_res

rpc_req

Node 1 Node 2

Recv Resp

Send Req

Recv Req

Send Resp

Unified Memory 
Address on CXL

rpc_req

rpc_res

Network

Pass-by-Reference RPC

queue
REF

REF

Figure 1. HydraRPC Architecture.
enables developers to create distributed applications more
efficiently, making it a crucial component in datacenters. For
modern RPC implementations, performance and scalability
are vital. Network latency and data transfer for communi-
cation and (de)serialization can hinder performance [13],
while congestion at both the hardware (network) and soft-
ware (buffer management) levels can limit scalability [4].
When deploying CXL-based RPC, it is crucial to design the
architecture with shared memory abstractions of CXL.

CXL-RPC Abstractions. We designed a CXL-based RPC
named HydraRPC [11] to minimize network latency and
avoid costly memory operations using CXL shared mem-
ory. In traditional pass-by-value RPC, message passing typ-
ically involves copying data payloads from one server to
another [8]. In contrast, shared memory abstractions merely
exchange references, representing a pass-by-reference ap-
proach. This allows access to only necessary parts of the
data and supports in-place updates, providing notable ben-
efits in various scenarios. Utilizing CXL shared memory
presents two major advantages: 1) it bypasses the network,
and 2) it offers byte-addressable access, enabling the devel-
opment of dynamic data structures with link pointers and
permitting in-place modifications. This prevents the need
for (de)serialization, thereby improving performance.
As shown in Figure 1, CXL provides unified memory ad-

dresses for message queues and data areas. HydraRPC em-
ploys two message queues for each connection, each queue
entry consists of a reference (REF) to a data area and an
embedded arrival flag. In the Data Plane, The client writes
request data to the data area and updates the request mes-
sage queue without waiting for a server response, while the
server polls for the arrival flag. Upon receiving a request,
the server uses the offset from the queue entry to execute
the request, following a “run-to-completion” principle for
lightweight requests. The server can directly access preallo-
cated memory for efficiency. The server appends a response
entry to the response message queue, and the client polls
this queue and finally acknowledges arrival.

Implementation Details. Instead of general Load/Store
memory access instructions, we employ non-cachable shar-
ing to bypass the CPU cache, including two mechanisms:
MTRR (Memory Type Range Registers) [9] and non-temporal
memory access such as clflush/prefetch for individual

Kernel

IPC (SHM/FIFO/SEM)

CXL/PCIe Driver

CXL Device/HDM/Switch/Fabric Manager

Memory ManagementRPC

User-space APP

CXL-SMC

Database

CXL-RPC CX-SHM CXL-KVCXL-Multi-
kernel

Serverless

Network

CXL-CRIUCXL-IPC

User-space Lib

Kernel-space

Figure 2. Software Stack of Distributed Applications.
scenarios. To achieve low CPU utilization and high perfor-
mance, we use SSE3 power reduction instruction during
polling-based notifications. Besides, HydraRPC supports the
sliding window protocol to prevent access congestion.

4 Conclusion and Future Directions
Evolution ofCloudComputing. Implementing CXL-based
DSM broadly poses a significant challenge in the industry.
We discovered that the benefits of DSM align seamlessly with
the progression of cloud computing. Consequently, most
users can take advantage of CXL pooling and sharing. How-
ever, the refinement of billing granularity has become in-
creasingly precise with the advancement of cloud infrastruc-
ture. This refinement allows both users and cloud providers
to achieve greater overall resource utilization. Nevertheless,
traditional applications often find it difficult to leverage these
advancements due to their inherent lack of elasticity. We be-
lieve that it is one of the most crucial challenges that future
CXL research should address.
Evolution of Software Stack. As shown in Figure 2, we
proposed the hierarchical software stack architecture for
Compute Express Link (CXL). We highlight the combina-
tion of user-space and kernel-space components, with the
architecture structured in several tiers, enabling users to
leverage the pooling and sharing features of CXL across dif-
ferent scenarios. At the kernel-space level, we implement
various kernel mechanisms that leverage CXL protocols, in-
cluding CXL-based Multi-kernel for clusters, CXL-SMC for
high performance socket communication based on SMC [7],
and CXL-IPC for remote interprocess communications (sim-
ilar to DIPC [12]). These components ensure intra-server
communicationmechanisms, enabling high-speed data trans-
fer and coordination. CXL-SHM [15] and HydraRPC [11] are
two important components for memory management and
RPC separately in our big picture for the user-space library.
Additionally, our system allows user-space applications such
as database and serverless to enjoy scalable, on-demand re-
source utilization. For example, by employing a memory
re-purposing mechanism within the CRIU, TrEnv [6] offers
serverless applications the hot-start ability while simulta-
neously reducing memory utilization. The above software
stack can provide users with pooling and sharing capabilities
in various scenarios.

3



References
[1] 2022. Compute Express Link 3.0. https://www.computeexpresslink.o

rg/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf.
[2] 2022. Compute Express Link™: The Breakthrough CPU-to-Device

Interconnect. https://www.computeexpresslink.org/home.
[3] 2023. World’s first CXL 2.0 and PCIe Gen5 Switch IC.

https://www.xconn-tech.com/product.
[4] Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC

on reliable connection with efficient resource sharing. In Proceedings
of the Fourteenth EuroSys Conference 2019. 1–14.

[5] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo
Jung. 2022. Direct Access High-Performance Memory Disaggregation
with DirectCXL. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). 287–294.

[6] Jialiang Huang, Mingxing Zhang, Teng Ma, Zheng Liu, Sixing Lin,
Kang Chen, Jinlei Jiang, Xia Liao, Yingdi Shan, Ning Zhang, Mengting
Lu, Tao Ma, Haifeng Gong, and Yongwei Wu. 2024. TrEnv: Trans-
parently Share Serverless Execution Environments Across Different
Functions and Nodes. In Proceedings of the ACM SIGOPS 30th Sym-
posium on Operating Systems Principles (SOSP ’24). Association for
Computing Machinery, New York, NY, USA.

[7] IBM. 2022. SMC for Linux on IBM Z and LinuxONE. https://linux-on-
z.blogspot.com/p/smc-for-linux-on-ibm-z.html.

[8] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-Sided
(RDMA) Datagram RPCs.. In OSDI. 185–201.

[9] Kernel. 2022. MTRR (Memory Type Range Register) control. https:
//docs.kernel.org/arch/x86/mtrr.html.

[10] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar
Agarwal, et al. 2023. Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms. In ASPLOS 2023.

[11] Teng Ma, Zheng Liu, Chengkun Wei, Jialiang Huang, Youwei Zhuo,
Haoyu Li, Ning Zhang, Yijin Guan, Dimin Niu, Mingxing Zhang, et al.
2024. HydraRPC:RPC in the CXL Era. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24). 387–395.

[12] DS Molojicic, Alan Langerman, David L Black, Michelle Dominijanni,
Randall W Dean, and Steven J Sears. 1997. Concurrency: a case study
in remote tasking and distributed TPC in Mach. IEEE concurrency 5, 2
(1997), 39–49.

[13] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework
for Emerging AI Applications. In OSDI (Carlsbad, CA, USA). USENIX,
561–577.

[14] Yongwei Wu, Teng Ma, Maomeng Su, Mingxing Zhang, CHEN Kang,
and Zhenyu Guo. 2019. RF-RPC: Remote Fetching RPC Paradigm for
RDMA-Enabled Network. IEEE Transactions on Parallel and Distributed
Systems 30, 7 (2019), 1657–1671. https://doi.org/10.1109/TPDS.2018.
2889718

[15] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang Chen, Ning
Ding, Fan Du, Jinlei Jiang, Tao Ma, and Yongwei Wu. 2023. Partial fail-
ure resilient memory management system for (cxl-based) distributed
shared memory. In Proceedings of the 29th Symposium on Operating
Systems Principles. 658–674.

4

https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/home
https://linux-on-z.blogspot.com/p/smc-for-linux-on-ibm-z.html
https://linux-on-z.blogspot.com/p/smc-for-linux-on-ibm-z.html
https://docs.kernel.org/arch/x86/mtrr.html
https://docs.kernel.org/arch/x86/mtrr.html
https://doi.org/10.1109/TPDS.2018.2889718
https://doi.org/10.1109/TPDS.2018.2889718

	Abstract
	1 Distributed Systems with CXL
	2 CXL-based Distributed SHM Paradigms
	3 CXL-based Message Passing Paradigms
	4 Conclusion and Future Directions
	References

