
Towards Optimal Remote JIT Compilation Scheduling
for the JVM

Richard Kha∗
University of Toronto

Nikhil Sreekumar∗
University of Toronto

Alexey Khrabrov
University of Toronto and IBM

Eyal de Lara
University of Toronto

Angela Demke Brown
University of Toronto

Moshe Gabel
University of Toronto

Marius Pirvu
IBM

Abstract
In the Java Virtual Machine (JVM), Just-In-Time (JIT) com-
pilation is used to speed up Java applications, however, JIT
compilation incurs significant memory and CPU runtime
overheads. JITServer is a disaggregated JIT compiler in the
Eclipse OpenJ9 JVM – it decouples the JIT compiler from the
JVM, thereby reducing CPU and memory requirements of
JVM client applications.
JITServer schedules remote compilation requests from

connected clients in first-come, first-served (FCFS) order. We
show that when a JITServer instance is under high load, the
scheduler performs better when it considers client informa-
tion for each compilation request. Prioritizing requests from
newly connected clients helps those clients warm-up rapidly,
but risks starving requests from older clients. We developed
a scheduling algorithm we call ALDCF (Alternating Least
Done Client First) that prioritizes requests from clients with
fewer completed compilation requests, while reducing star-
vation of older clients through alternating with FCFS. In our
experiments, ALDCF reduces the average client JVM runtime
by up to 9% compared to FCFS, while controlling starvation.

1 Introduction
Modern cloud applications are commonly implemented in
languages such as Java, Scala, and Kotlin that run on the
Java Virtual Machine (JVM) [3, 5], making the JVM runtime
a key piece of cloud software infrastructure. The JVM ini-
tially executes applications by interpreting Java bytecodes,
but performance depends on just-in-time (JIT) [7] compila-
tion, which compiles bytecodes into optimized machine code
tailored to the specific application and runtime environment.
JIT compilation, however, consumes significant memory and
CPU resources, especially during application start-up and
warm-up phases [8]. This problem is exacerbated in cloud
datacenters, where JVMs often run in resource-constrained

∗Both leading authors contributed equally

HotInfra ’24, November 3, 2024, Austin, TX, USA
.

environments to increase application density, and applica-
tion instances are often short-lived (e.g., microservices, au-
tomatic load scaling, etc.).
JIT compiler disaggregation [1, 4] is a promising solu-

tion to the problem of JIT compilation overheads in cloud
workloads. Decoupling the JIT compiler from the application
JVM instance prevents competition for resources between
compilation and application execution, leading to higher
application quality of service, faster warm-up, and more pre-
dictable behaviour while reducing per-application-instance
memory footprint [8]. A single JIT compilation server could
support a large number of client JVMs by exploiting statisti-
cal multiplexing, i.e., as long as client compilation requests
are reasonably spread out, the server should be lightly loaded
and able to respond rapidly. Unfortunately, this is not always
the case, e.g., a spike in demand for a particular application
may trigger automatic load scaling to progressively launch
new instances, leading to a storm of simultaneous compila-
tion requests from many clients.
In this work, we focus on the challenges of scheduling

compilation requests from multiple clients in an overloaded
JIT compilation server. Since the performance gain due to
compiling a method for a client may vary across clients, the
overall benefit of the JIT compiler server can be increased by
judiciously choosing the next compilation. We explore this
challenge in the context of JITServer, the disaggregated JIT
compiler in the popular open-source Eclipse OpenJ9 JVM [2].
JITServer Background: In the JITServer implementation,
client JVMs decide whichmethods to compile, in which order,
and at what optimization level, using the same heuristics
as with local JIT compilation. Requests to compile these
methods are then sent to the server using a configurable
number of client compilation threads. Thus, each client typi-
cally has multiple pending compilation requests submitted
to the server. As with local JIT, a method may be compiled
multiple times at increasing optimization levels. Methods
are initially compiled at the "cold" level which applies few
optimizations but has a major performance impact since it
moves the method from interpretation to native execution.
Frequently invoked methods may be recompiled at "warm",
"hot", or "scorching" levels, which progressively apply more



HotInfra ’24, November 3, 2024, Austin, TX, USA Kha and Sreekumar et al.

0.0 0.1 0.2 0.3 0.4 0.5
Compilation time (s)

0

2

4

6

Co
un

t

1e4

1
Figure 1. Compilation time distribution for Dotty

optimizations and consume more compilation resources to
achieve higher application performance.
FCFS Scheduler: At the JITServer, remote compilation re-
quests fill a queue, and the server schedules its entries for
compilation in first-come, first-served (FCFS) order. For a
lightly loaded server, this policy is reasonable since clients
have already prioritized the order of their requests, and the
server-side queue is short. We observe that when the server
is overloaded with many clients, they accumulate a backlog
of requests, and scheduling them at the server becomes in-
creasingly important. While launching additional JITServer
instances could reduce load, this comes with added costs,
takes time, and may not always be possible.1

2 Improved Scheduling Policy
Wierman and Zwart [10] suggest that FCFS, the current
JITServer scheduler, is optimal for light-tailed workloads.
Figure 1 shows the distribution of compilation times on the
JITServer for remote compilations requested by clients run-
ning the Dotty workload from the Renaissance benchmark
suite [6, 9]. The distribution is spread out with high vari-
ability, and is clearly not light-tailed, suggesting that FCFS
is unlikely to be optimal. Compilation times vary widely
because of the different sizes and complexity of compiled
methods, as well as higher costs at higher optimization levels.

We also examine the warm-up curves of two Renaissance
benchmarks, Dotty and Future-Genetic, to show the dimin-
ishing returns of later compilation requests from the same
client JVM. Dotty runs a Scala compiler on a set of source
code files and focuses on data structures and synchroniza-
tion. Future-Genetic runs a genetic algorithm and focuses on
parallelization. These two benchmarks are well above and
well below the hot code size and hot method count geometric
means of all Renaissance workloads, respectively [9]. Thus,
these two benchmarks represent opposite ends of the perfor-
mance spectrum for the JVM and remote JIT compilation.
1Note that JITServer instances are shared only by client JVMs of the same
end user. We are not concerned with issues of security or fairness across
client application instances.

0 20 40 60 80 100
Iteration number

5

10

15

20

25

Ite
ra
tio

n
ru
nt
im

e
(s
)

Future-Genetic
Dotty

1
Figure 2. Client warm-up for Dotty and Future-Genetic

We used a single client JVM instance running 100 iter-
ations of either benchmark to see the impact on warm-up
time with a lightly loaded JITServer. Figure 2 shows the run-
time for each iteration. For both benchmarks, we see that
the per-iteration runtime decreases sharply during the first
few iterations, but eventually reaches a steady state. The
point where performance stabilizes is defined as the end of
the warm-up stage. During warm-up, we can also see dimin-
ishing returns from JIT compilation, particularly for Dotty –
during the first 5 iterations the per-iteration runtime quickly
decreases by over 20s, while during the next 20 iterations
runtime gradually decreases only by another 2s. The largest
benefit comes from initial compilations at the "cold" opti-
mization level, while recompiling methods at "warm" and
"hot" levels has less impact, although these requests consume
more JITServer resources.
In scenarios where multiple client JVMs start in a stag-

gered fashion with overlapping warm-up periods, such as
during automatic load scaling, the server queue will contain
a mix of requests from clients at different execution stages.
However, with an FCFS scheduler, the requests are handled
in their arrival order, without consideration for how much
benefit the client will gain. The results in Figure 2 suggest
that we should prioritize requests from clients in the early
execution stages to ensure that these impactful compilations
are done earlier.

We developed a Least Done Client First (LDCF) sched-
uler that picks the earliest request from the client with the
least number of compilations done so far as the next request
to handle. However, a stream of requests from new clients
may starve requests from older clients that have previously
accumulated many compilations. Based on this observation,
we propose the following Alternating Least Done Client
First (ALDCF) scheduling policy: alternate selection of the
next request to serve between (a) the earliest request from the
client with the fewest completed requests; and (b) the next
request in FCFS order, independent of the client. Alternat-
ing with FCFS scheduling prevents starvation of later-stage
clients while still prioritizing clients in their warm-up stage.



Towards Optimal Remote JIT Compilation Scheduling for the JVM HotInfra ’24, November 3, 2024, Austin, TX, USA

3 Results and Discussion
In this section we evaluate the performance of the proposed
ALDCF remote compilation scheduler compared to LDCF,
Round-Robin (RR), and the baseline First-Come, First-Served
(FCFS). We implemented ALDCF, LDCF, and (RR) in the
OpenJ9 JITServer, modifying it to enable client-aware sched-
uling, and using the number of compilations processed for
each client to prioritize scheduling decisions.
Experimental Setup: We ran our experiments on a ma-
chine with a 14-core (28-thread) Intel Xeon E5-2680 v4 CPU
and 128GiB of RAM. We put the JITServer instance under
high load by running it in a Docker container bound to a
single core and having 50 client JVMs connect to it. Note that
since the clients and server run on the same machine, there
is minimal communication latency. We stagger the starts
of the client JVMs to have them connect while in different
execution phases. We chose the stagger intervals empirically
depending on the benchmark to maintain load on the server
and to spread the clients sufficiently for phase differences.
This setup simulates a realistic workload as the server is CPU-
bound as expected under high load, and the client staggering
mirrors varying execution phases in connected clients.

We used the Dotty and Future-Genetic benchmarks from
the Renaissance suite [6, 9]. In each experiment, we run 50
client JVMs that execute 100 iterations of the benchmark
each, and use the ALDCF, LDCF, RR, and FCFS schedulers
to compare their performance in the following modes:
• Single workload: All client JVMs run the same workload,
starting in a staggered fashion with a 50s interval for Dotty
and 10s for Future-Genetic.

• Mixed workload: The clients run alternating workloads
(Dotty for even-numbered clients, Future-Genetic for odd-
numbered ones), staggered with an interval of 30s.

SingleWorkload: Figure 3 shows CDFs of client completion
times for single-workload Dotty and Future-Genetic exper-
iments. We observe that most Dotty clients experience a
significant speedup under the LDCF and ALDCF schedulers.
We also see that ALDCF consistently decreases runtimes
compared to RR or FCFS, while LDCF’s behaviour varies
depending on the workload.

For Dotty, compared to FCFS, ALDCF achieves a speedup
of 1.08, while LDCF achieves a speedup of 1.18 at the 80th
percentile of runtimes. We also see a 9% decrease in cumula-
tive runtime for ALDCF and a 17% decrease in cumulative
runtime for LDCF compared to FCFS. For Future-Genetic,
ALDCF achieves a speedup of 1.04 and LDCF achieves a
speedup of 1.09 vs. FCFS at the 80th percentile of runtimes.
However, we see that ALCDF leads to a <1% increase in cumu-
lative runtime, while LDCF leads to a sizeable 18% increase
in cumulative runtime compared to FCFS.
Mixed Workload: Figure 4 shows the results for a mix
of Dotty and Future-Genetic clients. In this scenario, LDCF
is the worst scheduler for Dotty, but the best scheduler for

0 1000 2000 3000 4000
Dotty: Completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

0 1000 2000 3000 4000 5000 6000
Future-Genetic: Completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

FCFS
LDCF
RR
ALDCF

1
Figure 3. CDFs of single workload completion times

Future-Genetic, while ALDCF has more stable performance.
For Dotty clients, FCFS is the best scheduler; in comparison,
ALDCF and FCFS have speedups of 0.92 and 0.88, respectively,
at the 80th percentile of runtimes. For Future-Genetic clients,
ALDCF and LDCF have speedups over FCFS of 1.53 and 1.77,
respectively, at the 80th percentile of runtimes.

During these experiments, the effect of starvation on client
JVMs manifests as compilation request timeouts, which hap-
pen when requests take longer than 30s. For Dotty, only
0.16% of compilation requests time out with FCFS, but this
increases to 7.0% of requests with LDCF. ALDCF alleviates
the starvation issue with only 0.21% of requests timing out.
Similar trends are seen for Future-Genetic.
Discussion: Our results demonstrate that incorporating
per-client progress data in remote JIT compilation schedul-
ing decisions can significantly impact client performance,
providing a promising approach for optimizing remote JIT
compilers. From the performance of FCFS and RR schedulers,
we observe that treating all compilation requests equally is
sub-optimal for most workloads. However, over-prioritizing
newer clients can lead to starvation of older ones, especially
clients within their warm-up stage. ALDCF provides a solu-
tion by alternating each scheduled request between priori-
tized and fair scheduling.
There is a stark contrast in the behaviours and perfor-

mance benefits of schedulers, especially ALDCF and LDCF, in
the single workload and mixed workload experiments. These



HotInfra ’24, November 3, 2024, Austin, TX, USA Kha and Sreekumar et al.

0 500 1000 1500 2000 2500 3000 3500
Dotty: Completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

0 200 400 600 800 1000
Future-Genetic: Completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

FCFS
LDCF
RR
ALDCF

1
Figure 4. CDFs of mixed workload completion times

schedulers prioritize compilations based on client informa-
tion. Therefore, the execution stages of clients with respect
to each other, as well as the relative cost of compilations
significantly affects scheduler performance. We discuss this
and its implications below.

4 Future Work
We claim that ALDCF is a beneficial scheduling approach for
remote JIT compilations and show early experimental results
supporting this claim. Our next steps are to explore a wider
variety of experiments for further validation and a nuanced
understanding of its benefits. We plan on incorporating a
larger set of workloads with a high variation of code size
and hot method count. We are also interested in how the
scheduler performs with varying workload intensities on
the JITServer, as well as when running multiple JITServer
instances to optimize reactive scale-out.

ALDCF alternates each scheduled request between priori-
tized and fair scheduling to balance the priorities of remote
compilation requests. However, there are other approaches
to seeking a balanced scheduler. We plan to explore different
ratios and orders of performing prioritized and fair schedules.
The respective client execution phase is an important factor
to decide the aggressiveness of heuristic-based prioritization.
Therefore, a Multi-Armed Bandit approach to dynamically
decide the aggressiveness of prioritization is a promising
direction to pursue in future work.

Prioritizing clients based on the number of compilations
performed does not consider that clients running mixed
workloads may have varying warm-up curves and execution
phases. Profiling workloads to more accurately model the
relative execution stage of clients may improve ALDCF’s
performance in handling mixed workloads. One possible
simple approach is to use the proportion of compilations
served for a client so far out of the maximum number of
compilations seen for this client’s application as a measure
of how far the client is into its warm-up phase.
Our preliminary experiments have established the effec-

tiveness of using client information in scheduling decisions.
Future research will explore what specific information is
most useful for scheduling. For example, we could use JIT-
Server CPU time spent handling each client’s requests, rather
than the number of methods compiled. Since some compi-
lations are costlier than others, using CPU time would be a
fairer basis for client priority.

A remote JIT scheduler may benefit from multiple streams
of client information. We will therefore investigate light-
weight machine learning approaches to scheduling given
client information. Since we know that different applications
act differently based on the scheduler, this is potentially
useful due to its ability to recognize underlying patterns of
workloads, and schedule accordingly.

References
[1] [n. d.]. Azul Cloud Native Compiler. https://www.azul.com/products/

prime/cloud-native-compiler/
[2] [n. d.]. Eclipse OpenJ9. https://eclipse.dev/openj9/
[3] [n. d.]. Java Language and Virtual Machine Specifications. https:

//docs.oracle.com/javase/specs/
[4] [n. d.]. JITServer Technology — Eclipse OpenJ9 Documentation. https:

//eclipse.dev/openj9/docs/jitserver/
[5] [n. d.]. OpenJDK. https://openjdk.org
[6] [n. d.]. Renaissance Suite, a Benchmark Suite for the JVM. https:

//renaissance.dev
[7] [n. d.]. JIT Compiler | Eclipse OpenJ9 Documentation. https://eclipse.

dev/openj9/docs/jit/
[8] Alexey Khrabrov, Marius Pirvu, Vijay Sundaresan, and Eyal de Lara.

2022. JITServer: Disaggregated Caching JIT Compiler for the JVM in
the Cloud. In 2022 USENIX Annual Technical Conference (USENIX ATC
22). USENIX Association, Carlsbad, CA, 869–884. https://www.usenix.
org/conference/atc22/presentation/khrabrov

[9] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-
boscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019.
Renaissance: benchmarking suite for parallel applications on the JVM.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019).
Association for Computing Machinery, New York, NY, USA, 31–47.
https://doi.org/10.1145/3314221.3314637

[10] Adam Wierman and Bert Zwart. 2012. Is Tail-Optimal Scheduling
Possible? Operations Research 60, 5 (2012), 1249–1257. http://www.
jstor.org/stable/23323693

https://www.azul.com/products/prime/cloud-native-compiler/
https://www.azul.com/products/prime/cloud-native-compiler/
https://eclipse.dev/openj9/
https://docs.oracle.com/javase/specs/
https://docs.oracle.com/javase/specs/
https://eclipse.dev/openj9/docs/jitserver/
https://eclipse.dev/openj9/docs/jitserver/
https://openjdk.org
https://renaissance.dev
https://renaissance.dev
https://eclipse.dev/openj9/docs/jit/
https://eclipse.dev/openj9/docs/jit/
https://www.usenix.org/conference/atc22/presentation/khrabrov
https://www.usenix.org/conference/atc22/presentation/khrabrov
https://doi.org/10.1145/3314221.3314637
http://www.jstor.org/stable/23323693
http://www.jstor.org/stable/23323693

	Abstract
	1 Introduction
	2 Improved Scheduling Policy
	3 Results and Discussion
	4 Future Work
	References

