
Evaluating Infrastructure as Code: Key Metrics and
Performance Benchmarks

Aditya Gupta
f20190338g@alumni.bits-pilani.ac.in
BITS Pilani, K K Birla Goa Campus

Goa, India

Paras Mittal
f20190183g@alumni.bits-pilani.ac.in
BITS Pilani, K K Birla Goa Campus

Goa, India

Dr. Kunal Korgaonkar
kunalk@goa.bits-pilani.ac.in

BITS Pilani, K K Birla Goa Campus
Goa, India

Abstract
Organizations are increasingly adopting Infrastructure as
Code (IaC) to automate the management and provisioning of
cloud resources, moving away from manual configurations.
Despite its growing usage, there is a lack of comprehensive re-
search evaluating the performance of IaC tools in large-scale,
real-world scenarios with complex architectures. This paper
addresses this gap by comparing Terraform and AWS Cloud-
Formation, two leading IaC tools, across key performance
metrics such as CPU usage, memory consumption, system
time, and user time. Using the TrainTicket project, which
encompasses 47 microservices, we evaluate both tools in a
controlled environment to provide insights into their effec-
tiveness in managing large-scale cloud infrastructures. Our
findings offer valuable guidance for organizations choosing
between Terraform and CloudFormation in enterprise-scale
deployments.

1 Introduction
The adoption of cloud services has simplified resource pro-
visioning but introduced challenges like manually manag-
ing cloud infrastructure, minimizing errors, and adapting to
fast-evolving technologies. Manual provisioning can result
in misconfigurations and slow down processes, especially
in large, industry standard systems. To overcome these is-
sues, Infrastructure as Code (IaC) has emerged as a solution,
automating and standardizing cloud infrastructure manage-
ment.

Two widely-used IaC tools are Terraform and AWS Cloud-
Formation, each with distinct features. Terraform, developed
by HashiCorp, is cloud-agnostic and supports multi-cloud
environments, offering flexibility for organizations operating
across multiple providers. AWS CloudFormation, in contrast,
is optimized for AWS environments, providing seamless in-
tegration and faster performance for AWS-native tasks.

Terraform employs a multi-stage process (initialization of
Terraform dependencies, planning updates, and application
of updates) that gives users detailed control over infrastruc-
ture changes, though this can increase execution time and
resource consumption. AWS CloudFormation, on the other
hand, uses a simpler, single-stage process focused on speed

The 2nd Workshop on Hot Topics in System Infrastructure (HotInfra’24), co-
located with SOSP’24, November 3, 2024, Austin, TX, USA

and integration, which trades off some flexibility for faster
task completion in AWS environments.
While both tools adhere to infrastructure immutability

principles, their usability and performance differ signifi-
cantly. Terraform excels in flexibility and multi-cloud sup-
port, while CloudFormation offers superior speed within
AWS.

Organizations adopting IaC face the difficult decision of
selecting the right tool for their specific requirements. While
existing studies have explored developers’ cost awareness
when using tools like Terraform and AWS CloudForma-
tion [2], and others have evaluated simpler applications on
AWS CDK and Terraform [3], few have focused on large-
scale, industry-relevant architectures. The majority of these
studies lack an in-depth evaluation of performance, scala-
bility, and usability metrics that are critical in enterprise
environments, where infrastructure needs to scale quickly
without sacrificing efficiency. Furthermore, these studies
often fail to simulate the complexity and scale typical of real-
world systems, leaving a gap in understanding how these
tools perform under industrial conditions.

This paper aims to bridge that gap by providing a compre-
hensive comparison of Terraform and AWS CloudFormation.
We evaluate both tools across key performance metrics such
as system time, user time, total elapsed time, CPU usage, and
memory consumption. Using the TrainTicket project [1],
which simulates an industrial microservice system with 47
microservices, we provide insights into how these IaC tools
perform in real-world, large-scale scenarios. Our findings
offer practical guidance for organizations looking to make in-
formed decisions about their IaC strategy, particularly when
balancing the trade-offs between flexibility, performance,
and multi-cloud support.

2 Methodology
In this study, we evaluated the performance of Terraform
and AWS CloudFormation using the TrainTicket system, a
large-scale microservice architecture consisting of 47 mi-
croservices. The TrainTicket system was chosen based on
its relevance in simulating industry-scale microservice ar-
chitectures, as highlighted in the work "Benchmarking Mi-
croservice Systems for Software Engineering Research" [4].
The infrastructure provisioning tasks, including creation, up-
dates, and deletion, were conducted to reflect realistic usage
patterns in large-scale deployments.



HotInfra ’24, November 3, 2024, Austin, TX, USA Gupta, Mittal, Korgaonkar et al.

In this study, we measured several key performance met-
rics to evaluate the efficiency of Terraform and AWS Cloud-
Formation. System Time refers to the duration spent by the
operating system processing system-level calls during infras-
tructure provisioning, providing insight into computational
overhead. User Time captures the CPU time dedicated to
executing user-level instructions by the IaC tool. Together,
these contribute to the Total Elapsed Time, which reflects
the complete duration from the start to the completion of a
task, including both system and user time, thereby indicat-
ing overall efficiency. We also recorded Peak Memory Usage,
which represents the maximum memory consumed during
the provisioning process, and CPU Usage (%), indicating the
percentage of CPU resources utilized during operations, thus
assessing resource efficiency. For AWS CloudFormation, we
included the Additional Time to Reflect on Console, a met-
ric that measures the delay between the completion of a
command-line interface (CLI) process and the visibility of
changes in the AWS console.
We used the Unix’s "time" command to measure system

time, user time, total elapsed time, peak memory usage, and
% CPU used. The additional time for updates to reflect on the
AWS console was noted manually for AWS CloudFormation,
capturing the delay between the CLI completion and the
changes appearing in the AWS Management Console.
It’s important to note that these metrics solely focus on

the resource provisioning aspect of both tools and do not
include any time or performance impacts related to appli-
cation code execution. The experiments were conducted on
the AWS infrastructure, provisioning services like EC2 in-
stances, VPCs, security groups, EBS volumes, IAM roles,
CloudWatch log groups, and S3 buckets. The noted times
reflect the performance of the CLI processes running on the
host system, offering a direct comparison of Terraform and
AWS CloudFormation’s execution characteristics.

For Terraform, the stages included Initialization, Planning,
Applying changes, Planning updates, Applying updates, and
Destruction. In contrast, AWS CloudFormation followed a
more streamlined approach with the stages being Creation,
Updates, and Deletion. By measuring the performance of
both tools across these stages, we captured how each tool
handles infrastructure provisioning and modification tasks,
providing insights into their scalability and resource utiliza-
tion.

During the creation stage, we provisioned t2.micro EC2 in-
stances for all 47 microservices, using default security groups
and VPC settings. In the update stage, these instances were
upgraded to t2.small, with additional infrastructure such as
10GB EBS volumes, S3 buckets, and CloudWatch log groups
being provisioned, along with the necessary IAM roles. The
deletion stage involved the teardown of all these resources.

The experiments were conducted in the ap-south-1 AWS
region on a dedicated EC2 instance of the same class (t2.small)

to ensure consistency across runs. Terraform and CloudFor-
mation scripts were executed sequentially to avoid interfer-
ence and ensure accurate metric capture. All metrics were
averaged across the 47 microservices to provide a compre-
hensive comparison of the two tools’ performance. This ap-
proach allows us to evaluate the overall efficiency of the tools
when handling a large-scale, industry-oriented architecture.

3 Results
System Time, User Time, and Total Elapsed Time: Our
analysis shows that Terraform consistently has higher sys-
tem and user times across all operational stages—initial de-
ployment, updates, and destruction. For instance, during
initial deployment, Terraform’s system time was 1.6 seconds,
while CloudFormation’s equivalent creation stage took just
0.14 seconds. During updates, Terraform’s planning and ap-
plication stages took 1.122 seconds and 1.026 seconds, respec-
tively, whereas CloudFormation completed its entire update
stage in 0.2 seconds. Similarly, Terraform’s user time during
initial deployment was 7.5 seconds, compared to CloudFor-
mation’s 0.84 seconds.

Total Elapsed Time: Terraform’s total elapsed time was
consistently higher. During initialization, Terraform took
19.21 seconds, while CloudFormation completed a similar
task in 1.32 seconds. This difference was even more pro-
nounced during the destruction phase, where Terraform took
86.79 seconds, compared to CloudFormation’s 2.08 seconds.

Resource Utilization (CPU and Memory): Significant
differences were observed in CPU usage and memory con-
sumption. Regarding memory, Terraform’s peak memory
consumption during its planning phase was 302 MB, com-
pared to CloudFormation, which required only 69 MB in
any of its stages. During the initial deployment, Terraform’s
CPU usage started at 47% during initialization, dropping
to 13% during the application phase, whereas CloudForma-
tion’s CPU usage was 72% during creation and spiked to 88%
during both the update and deletion stages. The visual rep-
resentations of this data are provided in Figure 1 and Figure
2. Please note that the values in these figures are averaged
and represent the metrics for a single service.

Additional Time toReflect on theConsole (CloudFor-
mationOnly): For AWSCloudFormation, we also measured
the additional time it took for changes to appear on the AWS
Management Console after the CLI process was completed.
This delay was most significant during updates, with an ad-
ditional time of 33 seconds. In contrast, creation and deletion
stages took 4.86 seconds and 11 seconds, respectively.

Key Takeaways: Terraform’s multi-stage process intro-
duces more overhead compared to CloudFormation’s stream-
lined, single-stage approach. CloudFormation executes changes
faster but lacks the planning transparency provided by Ter-
raform. Terraform’s longer times reflect the complexity of
managing multi-cloud configurations and executing detailed



Evaluating Infrastructure as Code: Key Metrics and Performance Benchmarks HotInfra ’24, November 3, 2024, Austin, TX, USA

plans, while CloudFormation leverages AWS optimization to
complete tasks quickly, though it sacrifices flexibility outside
AWS. Terraform uses less CPU but consumes significantly
more memory due to its state management and complex
planning. CloudFormation, on the other hand, has higher
CPU usage but requires much less memory due to its AWS-
optimized, simpler state management. CloudFormation ex-
periences a delay in reflecting changes in the AWS console,
particularly during updates, due to the handoff of processes
to AWS.

Figure 1. Memory Usage for Terraform and AWS CloudFor-
mation for different stages.

Figure 2. % CPU Usage for Terraform and AWS CloudFor-
mation for different stages.

4 Conclusion and Future Work
This paper presents a data-driven comparison of Terraform
and AWS CloudFormation in the deployment, updating, and
destruction of 47 microservices on dedicated EC2 instances.
The results indicate that CloudFormation consistently out-
performs Terraform in speed, completing the initial creation
in 1.32 seconds versus 19.21 seconds for Terraform. This
trend continues in updates (CloudFormation: 2.118 seconds,
Terraform: 122.4 seconds) and destruction (CloudFormation:
2.08 seconds, Terraform: 86.79 seconds), highlighting Cloud-
Formation’s efficiency for AWS-native operations.
However, Terraform excels in flexibility and multi-cloud

support, offering detailed previews during its 5–6 second
planning phases, which is vital for complex environments.
Despite Terraform’s higher peak memory usage (60,416 KB
vs. CloudFormation’s 13,906 KB), this trade-off is often justi-
fied for teams needing comprehensive execution planning.

In conclusion, organizations should choose CloudForma-
tion for speed and efficiency in AWS-centric operations,
while Terraform is preferable for those requiring multi-cloud
capabilities and greater control over infrastructure changes.
Ultimately, the selection should align with the organization’s
broader cloud strategy.

Several promising avenues for exploration remain. A crit-
ical area is the cost analysis of Terraform and AWS Cloud-
Formation in managing large-scale infrastructures, as costs
for API calls and resource updates can increase significantly.
Understanding these implications over the long term would
aid organizations in optimizing cloud expenditures.
Another focus is state management in Terraform. Our

benchmarks suggest that as infrastructure scales, Terraform’s
state files becomemore complex, impacting performance and
maintainability in collaborative settings. Researching these
effects could enhance long-term usability.
Additionally, examining the performance of both tools

in serverless and containerized architectures, such as AWS
Lambda and Kubernetes, could provide insights into their
effectiveness in modern cloud environments.

Comparing Terraform andCloudFormationwith emerging
IaC tools like Pulumi and AWS CDK could also highlight how
new tools meet the demands of agile cloud development.

While this paper offers a detailed evaluation of Terraform
and CloudFormation, future research could extend into cost
efficiency, security, and the impact of evolving infrastructure
patterns. This broader perspective will help organizations
make informed choices when selecting their IaC tool.

References
[1] AdKrGu. 2024. GitHub - AdKrGu/train-ticket-benchmarking: This

repository serves as a demo for benchmarking IaC tools. Forked from
https://github.com/FudanSELab/train-ticket. Retrieved Oct. 15, 2024
from https://github.com/AdKrGu/train-ticket-benchmarking

[2] A.-I. Neamt. 2024. From Terraform to AWS CloudFormation: A Study
of Cost Patterns and Antipatterns. Student Theses Faculty of Science and
Engineering (2024). https://doi.org/33817/1/bCS2024NeamtAI.pdf

[3] A. Pessa. 2023. omparative study of Infrastructure as Code tools for
Amazon Web Services. (June 2023). https://doi.org/handle/10024/
149567

[4] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and
Wenyun Zhao. 2018. Benchmarking microservice systems for software
engineering research. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings (Gothenburg, Sweden)
(ICSE ’18). Association for Computing Machinery, New York, NY, USA,
323–324. https://doi.org/10.1145/3183440.3194991

https://github.com/AdKrGu/train-ticket-benchmarking
https://doi.org/33817/1/bCS2024NeamtAI.pdf
https://doi.org/handle/10024/149567
https://doi.org/handle/10024/149567
https://doi.org/10.1145/3183440.3194991

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusion and Future Work
	References

