
Hardware-Assisted Virtualization of Neural
Processing Units for Cloud Platforms

Yuqi Xue
yuqixue2@illinois.edu

University of Illinois Urbana-Champaign

Yiqi Liu
yiqiliu2@illinois.edu

University of Illinois Urbana-Champaign

Lifeng Nai
lnai@google.com

Google

Jian Huang
jianh@illinois.edu

University of Illinois Urbana-Champaign

Abstract
Cloud platforms today have been deploying hardware ac-
celerators like neural processing units (NPUs) for powering
machine learning (ML) inference services. To maximize the
resource utilization while ensuring reasonable quality of ser-
vice, a natural approach is to virtualize NPUs for efficient
resource sharing for multi-tenant ML services. However, vir-
tualizing NPUs for modern cloud platforms is not easy. This
is not only due to the lack of system abstraction support
for NPU hardware, but also due to the lack of architectural
and ISA support for enabling fine-grained dynamic operator
scheduling for virtualized NPUs.
We present Neu10, a holistic NPU virtualization frame-

work. We investigate virtualization techniques for NPUs
across the entire software and hardware stack. Neu10 con-
sists of (1) a flexible NPU abstraction called vNPU, which
enables fine-grained virtualization of the heterogeneous com-
pute units in a physical NPU (pNPU); (2) a vNPU resource
allocator that enables pay-as-you-go computing model and
flexible vNPU-to-pNPU mappings for improved resource
utilization and cost-effectiveness; (3) an ISA extension of
modern NPU architecture for facilitating fine-grained ten-
sor operator scheduling for multiple vNPUs. We implement
Neu10 based on a production-level NPU simulator. Our ex-
periments show that Neu10 improves the throughput of ML
inference services by up to 1.4× and reduces the tail latency
by up to 4.6×, while improving the NPU utilization by 1.2×,
compared to state-of-the-art NPU sharing approaches.

1 Background and Motivation
Machine learning (ML) is becoming the backbone for many
popular ML services [3, 6, 25, 27]. To accelerate these ML
services, cloud platforms have employed hardware accelera-
tors like neural processing units (NPUs) [7, 11, 14, 15, 17, 18].
NPUs are highly specialized to accelerate the common op-
erations in deep neural networks (DNNs), such as matrix
multiplication and convolution. A typical NPU device is a
peripheral board with multiple NPU chips, and each chip has

The 2nd Workshop on Hot Topics in System Infrastructure (HotInfra’24), co-
located with SOSP’24, November 3, 2024, Austin, TX, USA

0 5 10 15 20 25 30
Time (millisec)

0
1
2
3
4

BERT (batch size = 32)
# of MEs # of VEs

0 100 200 300
Time ( sec)

0
1
2
3
4

DLRM (batch size = 32)
# of MEs # of VEs

Figure 1. The number of MEs and VEs demanded by DNN
inference workloads over time.

BERT
DLRM

EfficientNet

Mask-RCNN
MNIST NCF

ResNet

ResNet-RS

RetinaNet

ShapeMask

Transformer
0.001

0.01
0.1

1
10

100
M

E
/V

E
In

te
ns

ity
 R

at
io 1 8 32 64 128 256 512 1024

Figure 2. Intensity ratio of ME vs. VE for different inference
workloads (quantified by the execution time of ME/VE).

multiple NPU cores. Each NPU core has matrix engines (MEs)
that leverage systolic arrays to perform matrix multiplica-
tions and vector engines (VEs) for generic vector operations.
A well-known example is the Google Cloud TPU [15].

A common approach to using NPUs in cloud platforms
is to assign an entire NPU chip to a single ML applica-
tion in a virtual machine (VM) or container via PCIe pass-
through [27]. However, this disables resource sharing and
causes severe resource underutilization of NPUs. For in-
stance, our studies [30, 31] disclosed that many DNN in-
ference workloads cannot fully utilize TPU cores due to their
imbalanced demands on MEs and VEs. Many DNN work-
loads have diverse demands on the number of MEs and VEs
(see Figure 1 and Figure 2). The one-size-fits-all approach is
less attractive for cloud platforms.

To address the utilization challenge and ease the resource
management for cloud platforms to accommodate diverse
workload demands, it is desirable to virtualize hardware
devices and enable resource sharing among tenants. Unfor-
tunately, modern cloud platforms have limited virtualization
support for NPUs across the software and hardware stack.
Lack of system abstraction support for NPUs. Unlike the sys-
tem virtualization of multi-core processors [2, 8], NPUs have
unique heterogeneous compute resources (i.e., MEs and VEs).



HotInfra ’24, November 3, 2024, Austin, TX, USA Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang

To circumvent this complexity, cloud platforms today expose
homogeneous NPU cores to the user VMs. However, the exist-
ing abstraction at the NPU core level is too coarse-grained, as
user workloads may have diverse resource requirements. We
need a flexible system abstraction that allows users to specify
the ME/VE resources following the pay-as-you-go model [28].
Such an abstraction will simplify the NPU management for
cloud platforms, including NPU resource (de)allocation, re-
source mapping, and scheduling. Prior studies investigated
the system virtualization for FPGAs [5, 22, 23, 32, 33] and
GPUs [19, 29]. However, they cannot be directly applied to
NPUs, as they target different architectures.
Lack of architectural support for NPU virtualization. Prior
studies enabled the time-sharing of an NPU device at the task
level, and support the preemption for prioritized tasks [9, 10].
However, the coarse-grained time-sharing on the shared
NPU board still suffers from severe resource underutiliza-
tion, due to the lack of support of concurrent execution of
multi-tenant workloads. Existing NPU sharing approaches
either sacrifice isolation or suffer from high preemption over-
head [13]. As we move towards fine-grained NPU virtualiza-
tion, we need architectural support to achieve both improved
performance isolation and NPU utilization.
Lack of ISA support for virtualized NPUs. NPUs commonly
employ VLIW-style ISAs to simplify the hardware design,
and the ML compiler explicitly exploits the parallelism of the
compute units [4, 20, 21]. However, this requires the number
of compute units to be explicitly specified at the compila-
tion stage, and the number cannot be changed at runtime. In
this case, the VLIW ISAs unnecessarily couple control flows
of the compute units (i.e., MEs). As shown in Figure 3, the
original VLIW program must execute each VLIW instruction
sequentially, creating false dependencies between operations
on different MEs even though they do not have any true data
dependencies. As the compiler explicitly specifies how many
MEs are being used, the allocated MEs cannot be changed
at runtime unless the DNN program is recompiled. Even
though some compute units of a shared NPU become avail-
able, they cannot be utilized by the active workload (except
recompiling the DNN program). This is caused by the funda-
mental tussle between dynamic scheduling and VLIW ISAs.
As the collocated ML instances have various demands on
compute units at runtime, this limitation inevitably causes
either NPU underutilization or performance interference.
We need to rethink the NPU ISA design to facilitate dynamic
resource scheduling for virtualized NPUs.

2 Design and Implementation
We design Neu10 [31], a hardware-assisted system virtualiza-
tion framework for NPUs to enable flexible resource sharing
for improved utilization and performance isolation.
vNPU abstraction.We design the vNPU abstraction with
the goals of (1) allocating NPU hardware resource to a vNPU

VLIW Inst. 0

VLIW Inst. 1

VLIW Instr 2 ...

Orignal VLIW Program

ReLU R3 → R3

Pop ME0 → R0I0

I1

I2

Pop ME0 → R2

Pop ME0 → ...  

Computation of Tile 1

ReLU R0 → R0

ReLU R2 → R2

I0

I1

I2 ...

Pop ME1 → R1

Pop ME1 → R3

Pop ME1 → ...  

Computation of Tile 2

ReLU R1 → R1

ReLU R3 → R3

Separate

Pop ME0 → R0 Pop ME1 → R1

Pop ME0 → R2

Pop ME0 → ... 

Pop ME1 → R3

Pop ME1 → ... 

ReLU R0 → R0

ReLU R2 → R2

ReLU R1 → R1

Tiled Matrix Multiplication fused with ReLU

Compile

...

ReLU( )=

Pop ME0 → R0 Pop ME1 → R1 ME Operations ReLU R0 → R0 ReLU R1 → R1 VE Operations

Figure 3. Execution of MEs and VEs are separable. The
arrows between instructions denote data dependencies.

NPU API calls     (memcpy, kernel launch)

// copy input to NPU
input_tensor.to("npu")
// launch NPU computation
result = model(input_tensor)
// copy result to host
output_tensor.to("cpu")

Guest VM

N
PU

 P
ro

gr
am

vNPU Driver

DMA Buffer

Hypervisor

Physical
NPU Core

Control Unit

MEs VEs SRAM

vNPU Context DMA Engine

Command Buffer Host
Memory

Setup/Remove
vNPU Context

Setup/Delete
vNPU Instance

Hypercall
(request/free vNPU)

μTOp Scheduler

PCIe MMIO

NPU Runtime

NPU Compiler

ML Framework (PyTorch, TF, etc.)

1

2

IOMMU

PCIe Virtual Function

vNPU
Manager

3

Figure 4. System architecture of Neu10.

instance on demand; (2) hiding the complexity from the ML
programs with minimal changes to the guest software stack
for compatibility. A vNPU instance defines the number of
chips, cores per chip, MEs/VEs per core, SRAM size, and
HBM size, which reflects the hierarchy of a physical NPU
board. Each vNPU instance is exposed to the guest VM as
a PCIe device. The maximum vNPU size is capped by the
physical NPU size. If a guest VM requires more resources
than is available on a physical NPU board, Neu10 can allocate
multiple vNPU instances to this guest VM.
vNPU lifecycle. To create a vNPU instance, a user can spec-
ify the vNPU configuration following the pay-as-you-go
model [28]. Cloud providers can define various default con-
figurations (e.g., small/medium/large vNPU cores as having
1/4/8 MEs/VEs). Neu10 can also learn an optimized vNPU
configuration for a DNN workload with ML compilers. As
shown in Figure 4, upon vNPU initialization, the guest driver
sends a request to the hypervisor through a para-virtualized
interface ( 1 ). The vNPU manager maps the vNPU instance
to NPU hardware resources. Then, it initializes the vNPU



Hardware-Assisted Virtualization of Neural Processing Units for Cloud Platforms HotInfra ’24, November 3, 2024, Austin, TX, USA

ME μTOp

μTOp
(1, 0)

μTOp
(1, 1)

μTOp
(1, 2)

μTOp
(1, 3)

μTOp
Group 1

μTOp
(0, 0)

μTOp
(0, 1)

μTOp
Group 0

μTOp
(2, 0)

μTOp
Group 2

...

push load mul nop nop ...
push

pop

...

...

Tensor
Operator

...
...

DNN Model ME slot VE slot 0 VE slot 1 VE slot 2 VE slot 3 Misc slot

load mul nop nop ...

add relu store nop ...
Tensor

Operator

Tensor
Operator

VE μTOp

load mul nop nop ...

...

VE slot 0 VE slot 1 VE slot 2 VE slot 3 Misc slot

load mul nop nop ...

Figure 5. NeuISA programming model.

context in the physical NPU device and creates the MMIO
mappings for the guest VM to access the vNPU ( 2 ). During
execution, the application issues commands such as mem-
cpy and compute offloading through the command buffer.
The NPU hardware directly fetches the commands from
the host memory without the hypervisor intervention. It
also has DMA access to the DMA buffer in the guest mem-
ory space via the IOMMU. The DNN program on the NPU
executes asynchronously from the CPU program, and the
NPU hardware schedules vNPUs independently of existing
OS/hypervisor schedulers. The guest VM waits for the com-
pletion interrupt or actively polls the memory-mapped con-
trol registers for the current status of the vNPU ( 3 ). After
execution, the user can free the vNPU.
vNPU allocation and mapping. For each vNPU, the user
can specify the number of different types of compute units
(MEs/VEs) on-demand or follow the pay-as-you-go model in
cloud computing. However, as ML inference workloads have
diverse ME/VE demands, specifying the number of MEs/VEs
can be challenging for users who are not NPU experts. Thus,
we allow them to specify the total number of execution units
(EUs), which is directly related to the cost of running the
vNPU instance. Neu10 uses a resource allocation mechanism
that can decide the optimized vNPU configuration for differ-
ent ML workloads, based on the analysis using ML compilers.

Neu10 can map vNPUs to physical compute units of NPU
cores in different manners, based on the service level objec-
tives (SLOs) of ML services. To maximize the NPU utilization
while ensuring performance isolation, Neu10 enables fine-
grained spatial sharing with resource harvesting. Neu10 also
enables the oversubscription of NPU cores by temporally
sharing the MEs and VEs among multiple vNPU instances.
Therefore, the idle compute units can be opportunistically
utilized by collocated workloads.
ISA extension for NPU virtualization. To support dy-
namic ME/VE scheduling, we develop NeuISA. Our key ob-
servation is that the execution of different MEs and VEs in a
tensor operator is usually separable. Specifically, most DNN
operators, such as matrix multiplication and convolution,
are partitioned by DNN compilers [12, 34] into multiple tiles
that can be computed independently, as shown in Figure 3.
NeuISA decouples the execution of independent MEs in

a tensor operator by separating the control flow of each

μTOp Scheduler

Instruction Memory

μTOp Code
Snippets

μTOp
Exe. Table

M
E μTO

p 0
vNPU 1 Context

In
st

. Q
ue

ue
s M

E μTO
p 1

VE μTO
p 0

...
VE μTO

p 1
...

PCs

VE Operation
Dispatch

Issue to MEs Issue to VEs

μTOp Inst. Fetch

Operation
Scheduler

vNPU 0 Context

...
Figure 6. NPU core pipeline frontend for NeuISA.

ME and VE into independent instruction sequences, called
micro-Tensor Operators (𝜇TOps). To minimize changes to the
existing VLIW compiler and hardware, the instruction for-
mat inside a 𝜇TOp resembles the original VLIW ISA: an
instruction contains multiple slots, and each slot encodes an
operation. For a physical NPU core with 𝑛𝑥 MEs and 𝑛𝑦 VEs,
NeuISA defines two types of 𝜇TOps: (1) An ME 𝜇TOp con-
tains instructions with one ME slot and 𝑛𝑦 VE slots. An ME
𝜇TOpwill only use oneME during execution, which enforces
that each ME 𝜇TOp only contains the control flow of one
ME. To execute an operator on multiple MEs, the compiler
generates multiple ME 𝜇TOps. The VE slots in an ME 𝜇TOp
enable instruction-level parallelism between MEs and VEs.
They also enable operator fusions such as MatMul+ReLU. (2)
A VE 𝜇TOp contains instructions with no ME slot and 𝑛𝑦 VE
slots. The 𝑛𝑦 VE slots allow a VE 𝜇TOp to utilize all the VEs.

To support a fused operator, NeuISA organizes the 𝜇TOps
into a sequence of 𝜇TOp groups to express the dependencies
between 𝜇TOps. Each group contains up to 𝑛𝑥 ME 𝜇TOps,
allowing the operator to utilize all MEs, and up to one VE
𝜇TOp, as one VE 𝜇TOp can already utilize all the VEs. All
𝜇TOps in one 𝜇TOp group may execute concurrently, but
each groupmust execute sequentially to preserve data depen-
dency. As NeuISA inherits the VLIW semantic inside each
𝜇TOp, it intrinsically supports branches and loops inside a
𝜇TOp. To support branches across 𝜇TOp groups, NeuISA de-
fines special instructions that can be invoked in each 𝜇TOp.
Architectural support for NeuISA. Figure 6 shows the
pipeline design for fetching and scheduling 𝜇TOps. The NPU
core maintains the contexts of multiple vNPUs, including
the PC pointers to the program and the vNPU configurations.
Each time a new 𝜇TOp is ready or an existing 𝜇TOp finishes,
the 𝜇TOp scheduler selects the 𝜇TOps to be executed next.
For each vNPU, the 𝜇TOp scheduler retrieves the number
of allocated MEs and the number of ready ME 𝜇TOps from
the vNPU context. It selects a set of ready 𝜇TOps, and fetch
their instructions to the instruction queues.
Next, the operation scheduler selects which operations

from the instruction queues will be executed at every cycle.
The ME operations from the ME 𝜇TOp instruction queues
are directly issued to the corresponding MEs. For the VE



HotInfra ’24, November 3, 2024, Austin, TX, USA Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang

DLRM+SMask

DLRM+RtNt

NCF+RsNt

ENet+SMask

BERT+ENet

ENet+MRCN

ENet+TFMR

MNIST+RtNt

RNRS+RtNt

Collocated Workloads (W1+W2)

0

1

2

N
or

m
al

iz
ed

Th
ro

ug
hp

ut
W1-PMT
W1-V10

W1-Neu10-NH
W1-Neu10

W2-PMT
W2-V10

W2-Neu10-NH
W2-Neu10

Figure 7. Throughput of Neu10 (normalized to PMT).

operations, the scheduler selects which operations to issue
from all VE 𝜇TOp instruction queues. To reclaim a harvested
ME, Neu10 performs a context switch to preempt the har-
vesting 𝜇TOp. Upon a context switch, the register file and
the intermediate data in the MEs are saved to SRAM, which
incurs negligible overhead compared to the length of an op-
erator. The number of instruction queues should be large
enough to support simultaneous execution of all MEs/VEs.
Neu10 Implementation. We implement Neu10 with a pro-
duction-level event-driven NPU simulator. We obtain the
operator execution traces on real Google Cloud TPUs. We
use the tiling information to generate 𝜇TOps and replay the
generated 𝜇TOp traces in our simulator. We also prototype
the hardware scheduler for NeuISA in Verilog and synthe-
size it using FreePDK-15nm library [1]. The hardware area
overhead of Neu10 is 0.04% on a TPUv4 chip. The power
overhead of this small area is negligible over the entire chip.
Performance of Neu10. We evaluate Neu10 using DNN
workloads from MLPerf [26] and the official TPU reference
models [16].We compare the following designs: (1) PMT [13]:
temporal-sharing of the entire NPU core among multiple
vNPUs. (2) V10 [30]: temporal-sharing of all MEs and VEs
among the vNPUs, with a priority-based preemptive policy.
The workload is compiled with the traditional VLIW-style
ISA. (3) Neu10-NoHarvest: spatial-isolated vNPUs with dedi-
cated MEs/VEs without dynamic scheduling. This resembles
static partitioning techniques such as NVIDIA MIG [24].
(4) Neu10: spatial-isolated vNPUs with dynamic resource
scheduling and harvesting enabled by NeuISA. As shown in
Figure 7, Neu10 improves the throughput of ML inference
services by up to 1.4× compared to state-of-the-art NPU
sharing approaches. Neu10 also reduces the tail latency by
up to 4.6×, while improving the NPU utilization by 1.2×. We
presented more sensitivity analyses in the full paper1 [31].

3 Conclusion
We identify the key challenges of virtualizing NPUs for cloud
platforms. We present a holistic solution Neu10 for enabling
NPU virtualization. It improves both NPU utilization and
performance isolation for multi-tenant ML services.

1Our full paper will appear in the proceedings of the 57th IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO’24).

Acknowledgements
We thank Haoyang Zhang for his insightful discussion on
the NeuISA design. This work was partially supported by
NSF grant CCF-1919044, NSF CAREER Award CNS-2144796,
and the Hybrid Cloud and AI program at the IBM-Illinois
Discovery Accelerator Institute (IIDAI).

References
[1] [n. d.]. FreePDK15. https://eda.ncsu.edu/freepdk15/
[2] Keith Adams and Ole Agesen. 2006. A Comparison of Software and

Hardware Techniques for X86 Virtualization. In Proceedings of the
12th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’06). San Jose, California,
USA.

[3] Altexsoft. 2021. Comparing Machine Learning as a Service:
Amazon, Microsoft Azure, Google Cloud AI, IBM Watson.
https://www.altexsoft.com/blog/datascience/comparing-machine-
learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-
ibm-watson/

[4] AMD. 2023. AI Engine: Meeting the Compute Demands of Next-
Generation Applications. https://www.xilinx.com/products/
technology/ai-engine.html

[5] AWS. 2022. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/
instance-types/f1/

[6] Amazon AWS. 2022. Machine Learning on AWS Innovate faster with
the most comprehensive set of AI and ML services. https://aws.
amazon.com/machine-learning/

[7] Amazon AWS. 2023. AWS Inferentia. https://aws.amazon.com/
machine-learning/inferentia/

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the Art of Virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP’03). Bolton Landing,
NY, USA.

[9] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason
Mars, and Lingjia Tang. 2017. Prophet: Precise QoS Prediction on
Non-Preemptive Accelerators to Improve Utilization in Warehouse-
Scale Computers. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’17). Xi’an, China.

[10] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Bay-
max: QoS Awareness and Increased Utilization for Non-Preemptive
Accelerators in Warehouse Scale Computers. In Proceedings of the
Twenty-First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’16). Atlanta,
GA.

[11] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,
Yunji Chen, and Olivier Temam. 2014. DianNao: A Small-Footprint
High-Throughput Accelerator for Ubiquitous Machine-Learning. In
Proceedings of the 20th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’14). Salt
Lake City, UT.

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
Proceedings of the 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’18). Carlsbad, CA.

[13] Yujeong Choi and Minsoo Rhu. 2020. PREMA: A Predictive Multi-Task
Scheduling Algorithm For Preemptible Neural Processing Units. In Pro-
ceedings of the 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA’20). San Diego, USA.

https://eda.ncsu.edu/freepdk15/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.xilinx.com/products/technology/ai-engine.html
https://www.xilinx.com/products/technology/ai-engine.html
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/


Hardware-Assisted Virtualization of Neural Processing Units for Cloud Platforms HotInfra ’24, November 3, 2024, Austin, TX, USA

[14] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, ToddMassengil, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, Christian Boehn, Oren Firestein, Alessandro Forin,
Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan, Tamas
Juhasz, Ratna Kumar Kovvuri, Sitaram Lanka, Friedel vanMegen, Dima
Mukhortov, Prerak Patel, Steve Reinhardt, Adam Sapek, Raja Seera,
Balaji Sridharan, Lisa Woods, Phillip Yi-Xiao, Ritchie Zhao, and Doug
Burger. 2017. Accelerating Persistent Neural Networks at Datacenter
Scale. In Proceedings of HotChips’17. Cupertino, CA.

[15] Google. 2022. System Architecture - Cloud TPU. https://cloud.google.
com/tpu/docs/system-architecture-tpu-vm

[16] Google. 2023. Supported reference models. https://cloud.google.com/
tpu/docs/tutorials/supported-models

[17] Graphcore. 2022. Graphcore IPU Overview. https://www.graphcore.
ai/products/ipu

[18] Linley Gwennap. 2020. Tenstorrent Scales AI Performance: New Mul-
ticore Architecture Leads in Data-Center Power Efficiency. https:
//www.linleygroup.com/mpr/article.php?id=12287

[19] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022.
Microsecond-scale Preemption for Concurrent GPU-accelerated DNN
Inferences. In Proccedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’22). Carlsbad, CA.

[20] Jonathan Hui. 2020. AI Chips Technology Trends and Landscapes
(Mobile SoC, Intel, Asian AI Chips, Low-Power Inference Chips).
https://jonathan-hui.medium.com/ai-chips-technology-trends-
landscape-mobile-soc-intel-asian-ai-chips-low-power-inference-
4db701dbe85d

[21] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-
Datacenter Performance Analysis of a Tensor Processing Unit. In Pro-
ceedings of the 44th International Symposium on Computer Architecture
(ISCA’17). Toronto, Canada.

[22] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric
Schkufza, and Christopher J. Rossbach. 2018. Sharing, Protection,
and Compatibility for Reconfigurable Fabric with AmorphOS. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). Carlsbad, CA.

[23] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J. Rossbach,
and Eric Schkufza. 2021. Compiler-Driven FPGA Virtualization with
SYNERGY. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (Virtual, USA). https://doi.org/10.1145/3445814.3446755

[24] Nvidia. 2022. Multi-Instance GPU User Guide. https://docs.nvidia.
com/datacenter/tesla/mig-user-guide/

[25] Ejiro Onose. 2022. Machine Learning as a Service: What
It Is, When to Use It and What Are the Best Tools Out
There. https://neptune.ai/blog/machine-learning-as-a-service-what-
it-is-when-to-use-it-and-what-are-the-best-tools-out-there

[26] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody
Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton
Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George
Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. 2020. MLPerf
Inference Benchmark. arXiv:1911.02549

[27] RUN:AI. 2022. Google TPU Architecture and Performance Best Prac-
tices. https://www.run.ai/guides/cloud-deep-learning/google-tpu

[28] Stephen J. Bigelow. 2022. pay-as-you-go cloud computing (PAYG cloud
computing), https://www.techtarget.com/searchstorage/definition/
pay-as-you-go-cloud-computing-PAYG-cloud-computing.

[29] Kyle Wiggers. 2022. Microsoft and NVIDIA team up
to build new Azure-hosted AI supercomputer. https:
//techcrunch.com/2022/11/16/microsoft-and-nvidia-team-up-
to-build-new-azure-hosted-ai-supercomputer/

[30] Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang. 2023. V10: Hardware-
Assisted NPU Multi-Tenancy for Improved Resource Utilization and
Fairness. In Proceedings of the 50th Annual International Symposium
on Computer Architecture (ISCA’23). Orlando, FL, USA.

[31] Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang. 2024. Hardware-
Assisted Virtualization of Neural Processing Units for Cloud Platforms.
https://arxiv.org/abs/2408.04104

[32] Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the Cloud. Association
for Computing Machinery, New York, NY, USA, 845–858. https://doi.
org/10.1145/3373376.3378491

[33] Yue Zha and Jing Li. 2021. When Application-Specific ISA Meets
FPGAs: A Multi-Layer Virtualization Framework for Heterogeneous
Cloud FPGAs. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (Virtual, USA). https://doi.org/10.1145/3445814.3446699

[34] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen
Zhang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Wei Cui, Fan Yang, Mao
Yang, Lidong Zhou, Asaf Cidon, and Gennady Pekhimenko. 2022.
ROLLER: Fast and Efficient Tensor Compilation for Deep Learning. In
Proceedings of 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). Carlsbad, CA.

https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/tutorials/supported-models
https://cloud.google.com/tpu/docs/tutorials/supported-models
https://www.graphcore.ai/products/ipu
https://www.graphcore.ai/products/ipu
https://www.linleygroup.com/mpr/article.php?id=12287
https://www.linleygroup.com/mpr/article.php?id=12287
https://jonathan-hui.medium.com/ai-chips-technology-trends-landscape-mobile-soc-intel-asian-ai-chips-low-power-inference-4db701dbe85d
https://jonathan-hui.medium.com/ai-chips-technology-trends-landscape-mobile-soc-intel-asian-ai-chips-low-power-inference-4db701dbe85d
https://jonathan-hui.medium.com/ai-chips-technology-trends-landscape-mobile-soc-intel-asian-ai-chips-low-power-inference-4db701dbe85d
https://doi.org/10.1145/3445814.3446755
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://neptune.ai/blog/machine-learning-as-a-service-what-it-is-when-to-use-it-and-what-are-the-best-tools-out-there
https://neptune.ai/blog/machine-learning-as-a-service-what-it-is-when-to-use-it-and-what-are-the-best-tools-out-there
https://arxiv.org/abs/1911.02549
https://www.run.ai/guides/cloud-deep-learning/google-tpu
https://www.techtarget.com/searchstorage/definition/pay-as-you-go-cloud-computing-PAYG-cloud-computing
https://www.techtarget.com/searchstorage/definition/pay-as-you-go-cloud-computing-PAYG-cloud-computing
https://techcrunch.com/2022/11/16/microsoft-and-nvidia-team-up-to-build-new-azure-hosted-ai-supercomputer/
https://techcrunch.com/2022/11/16/microsoft-and-nvidia-team-up-to-build-new-azure-hosted-ai-supercomputer/
https://techcrunch.com/2022/11/16/microsoft-and-nvidia-team-up-to-build-new-azure-hosted-ai-supercomputer/
https://arxiv.org/abs/2408.04104
https://doi.org/10.1145/3373376.3378491
https://doi.org/10.1145/3373376.3378491
https://doi.org/10.1145/3445814.3446699

	Abstract
	1 Background and Motivation
	2 Design and Implementation
	3 Conclusion
	References

