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Abstract
The increasing complexity, heterogeneity, and scale of AI hardware
systems make them increasingly susceptible to hardware faults,
e.g., silent data corruption (SDC). Tackling this challenge requires
answering the question: How to evaluate and mitigate the impact
of SDCs on AI systems? For evaluation, we propose a novel quanti-
tative metric, Parameter Vulnerability Factor (PVF) [15], inspired
by architectural vulnerability factor (AVF) in computer architecture,
aiming to standardize the evaluation of SDC impact on AI models.
PVF focuses on SDC occurring in model parameters – we define
a model parameter’s PVF as the probability that a corruption in
that particular model parameter would result in an incorrect out-
put. Through extensive fault injection (FI), we obtain PVF for a set
of open-source models including DLRM, CNN, and BERT, as well
as three Meta’s production ranking and recommendation model,
based on which we present unique insights. For mitigation, we
propose Dr. DNA [21], a novel approach to detect and mitigate
SDCs by formulating and extracting a set of unique SDC signatures
from the Distribution of Neuron Activations (DNA). Through an
extensive evaluation across 10 different models, results show that
Dr. DNA achieves 100% SDC detection rate for most cases, 95%
detection rate on average and >90% detection rate across all cases,
representing 20% - 70% improvement over baselines. Dr. DNA also
mitigates the impact of SDCs by recovering model performance
with <1% memory overhead and <2.5% latency overhead.

1 Introduction
The reliability of AI systems directly translates to the dependabil-
ity, safety, functionality, and efficiency of services and operations
running on top of them. For instance, in recommendation model
inference, a reliable model is essential for accurate personalized
recommendations, crucial for achieving positive business outcomes.
Unfortunately, as AI hardware systems become increasingly com-
plex, heterogeneous and scaled up, and as transistor technology
plunges into the deep-nanometer regime, the reliability of AI hard-
ware systems faces a mounting challenge and a rising susceptibility
to hardware faults that can be caused by manufacturing defects,
aging components, or environmental factors [2, 3, 9, 28].

In particular, hardware faults that are not reported by standard
fault reporting mechanisms but leading to erroneous application
behavior have become increasingly prominent and harder to detect
in production systems, due to their elusive nature and subtle mani-
festations. We refer to these as silent data corruption (SDC), e.g.,
bit flips, which has been observed in CPU systems by Meta [6], and
confirmed by Google and Alibaba [13, 29]. In AI hardware, Nvidia
reported that “Hopper architecture GPUs may intermittently expe-
rience SDC resulting in incorrect results” [1], and Google reported
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hard-to-debug SDCs in their TPU systems [10]. Recently, in a 54-
day period of Llama 3 405B pre-training job at Meta, SDC occurred
6 times on GPU clusters, which could lead to the pause of the entire
16K-GPU cluster due to checkpointing and recovery [7].

In this paper, we consider SDC occurring in model parameters
(weights, bias, embeddings, etc) because they make most of the
total storage needed for a model, which is aligned with previous
studies [17, 19, 26, 27]. This can create what is referred to as pa-
rameter corruption, where AI model parameters are corrupted and
their original values are altered, potentially leading to model output
corruptions. Combating this challenge requires answers to:
• Q1: How to evaluate the impact of SDC? Specifically, how likely
is an SDC to result in an incorrect model output, and how do
different parts (such as modules and layers) of the models exhibit
varying vulnerability levels to SDCs? Existing works used met-
rics such as accuracy drop [22, 27] or SDC rate [2, 19], focusing
on model-level vulnerability, but there is a lack of an unified
parameter-level vulnerability metric that can answer this ques-
tion: How likely is a parameter corruption to result in an incorrect
model output? The answer to this question is critical in AI hard-
ware design, especially when mapping AI model parameters or
software variables to hardware blocks which may have varying
fault protection capabilities.

• Q2: How to mitigate the impact of SDC? Specifically, how to
detect insidious SDCs causing only minor changes in model
parameters, and how to detect SDCs in early stages before it
propagates to output with small overhead? Existing techniques
include model re-parameterization [11, 20], detecting outliers in
parameters [4, 8], or detecting model loss [24], or selective pro-
tections of the most vulnerable parameters [16]. However, these
SDC detection/mitigation techniques face challenges including
low accuracy, long latency, and notable overhead.

To address these questions, we propose PVF (for Q1) and Dr.
DNA (for Q2), which summarizes our earlier papers [15, 21].

2 PVF: Evaluating Impact of SDC
2.1 Overview
PVF is inspired by architectural vulnerability factor (AVF) in com-
puter architecture community. AVF quantifies the vulnerability of
a processor’s microarchitecture to soft errors [25]. An architectural
structure’s AVF is the probability that a fault in that particular struc-
ture will result in a program output error. Similarly, we define a
model parameter’s PVF as the probability that a corruption in that
particular model parameter will result in an incorrect model output,
e.g., a wrong click prediction or a wrong image classification. Simi-
lar to AVF as a statistical concept, PVF needs to be derived through
a large number of FI experiments that are statistically meaningful.
PVF is a versatile metric that can be tailored to different AI mod-
els/tasks and is also adaptable to different hardware fault models.
While we focus on applying PVF to inference in this paper, the same
metric and process can be extended to training stage to evaluate
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the effects of parameter corruptions on the model’s convergence
capability. A key distinction between training and inference is that
during training, the parameters are dynamically updated in differ-
ent iterations, making PVF a function of SDC’s temporal location
as well, in addition to its spatial location.
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Figure 1: Compute PVF via Fault injection (FI) [15]

2.2 Compute PVF via Fault Injection (FI)
Fig. 1 shows an overall flow to compute PVF through a FI process:
(1) Identify Target Parameters in the given AI model that we want
to compute PVF; examples include an embedding table, a layer, or
a specific weight tensor; (2) Inject Faults: For the target parameter,
we inject faults based on the given fault model, e.g., random bit
flip which is the most typical way to model SDCs [17, 19, 26, 27];
(3) Evaluate the Corrupted Model: Run the AI model inference
with the injected faults on the test data, and compare the model’s
output with ground-truth output. Step 2-3 is considered as one FI
experiment; (4) Repeat Step 2-3 for 𝑁 times (e.g., 1 million) wherein
each FI we use different random faults and inputs, and record the
number of incorrect output (𝐷); (5) Compute PVF as the 𝐷/𝑁 .
Note, because the model can have wrong predictions without any
hardware errors, we only focus on cases where correct predictions
become incorrect. Note depends on specific scenario, there may be
different evaluation metrics or definitions for “incorrectness”, e.g.,
at service-level, normalized entropy (NE) score is typically used.

2.3 Case Study on AI Models
We apply PVF to various AI models including CNN, BERT, and
DLRM in [15]. Due to space limit, we only present one example
based on DLRM in this paper. DLRM (deep learning recommen-
dation model) was developed by Meta for personalized content
recommendation, and has constituted 79% of the overall AI infer-
ence cycles at the Meta data center [14]. DLRM is mainly composed
of embedding tables and dense layers that has top MLP layers (top-
MLP) and bottom MLP layers (bot-MLP).

Fig. 2 illustrates the PVF of three DLRM parameter components,
embedding table, bot-MLP, and top-MLP, under 1, 2, 4, etc to 128
random bit flips during each inference. We observe different vulner-
ability levels across different parts of DLRM. For example, under
a single bit flip, the embedding table has relatively low PVF; this
is attributed to embedding tables being highly sparse. However,
top-MLP can have 0.4% PVF under even a single bit flip. This is sig-
nificant – for every 1000 inferences, four inferences will be incorrect.
This highlights the importance of protecting specific vulnerable
parameters for a given model based on the PVF measurement.

With 128 bit flips, PVF increases to 40% and 10% for top-MLP
and bot-MLP components respectively, while observing multiple
NaN values. Top-MLP component has higher PVF than bot-MLP.
This is attributed to the top-MLP being closer to the final model,

Figure 2: PVF of DLRM Parameters under multi-bit flip [15]

and hence has less of a chance to be mitigated by inherent error
masking probability of neural layers. For more results on DLRM,
please refer to [15].

2.4 Case Study on Production Models
We apply PVF to three production rank and recommendation mod-
els at Meta, and observe similar phenomenon as the open-source
DLRM, where the dense layers are more vulnerable than embedding.
Further, we observe that, rather than the sign bit, the MSBs in the
exponential field (referred to as E-MSB) of floating point weights
are especially vulnerable. We have observed (1) bit flip in E-MSB
may lead to NaN, (2) E-MSB of certain dense weights would have
a close to 100% PVF, meaning E-MSB flip in those weights would
almost certainly lead to an incorrect output, and (3) the average
PVFs of all dense weights E-MSBs across three model are >20%.

3 Dr. DNA: Mitigating Impact of SDC
3.1 Overview
To mitigate SDC impact, we propose Dr. DNA [21] which lever-
ages the unique SDC signatures in DNNs. The key idea behind Dr.
DNA is the hypothesis that an SDC will imprint a unique signature
in the Distribution of Neuron Activations (DNA) for a DNN model.
Fig. 3 shows an overview of the proposed Dr. DNA which features
two stages: offline profiling and SDC signature formulation, and
online detection and mitigation. Profiling is done completely of-
fline to obtain formulated SDC signatures based on DNA statistics,
while detection and mitigation is performed online to identify and
mitigate SDCs during inference. Due to space limit, please refer
to [21] for more details.

3.2 Offline SDC Signature Formulation
3.2.1 Profiling Neuron Activation. The first stage of Dr. DNA is
to profile neuron activation information at the end of the model
training. Specifically, a cohort of random indices of neurons are
selected for collecting neuron activations of each layer as “profiling
sites”. During model inference, the value of those profiling sites
are recorded for each sample. After one full pass of the profiling
set, a histogram can be elaborated for each profiling site, showing
the distribution of neuron activation values. Suppose we select
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Figure 3: Overview of Dr. DNA [21]

𝑘 profiling sites for each layer and there are 𝑛 total layers, Dr.
DNA will develop 𝑘 × 𝑛 profiling sites and histograms. In addition
to developing the histograms, we also record two additional sets
of statistics during profiling to extend the concept of DNA for
SDC detection: the distribution of the profiled neuron activations
within one layer depicted by another histogram of each layer, and
the extreme neurons of each layer determined by the highest and
lowest activation value.

3.2.2 SDC Signature and Abnormality Score. The profiling sites
from the profiling stage are used as “detection sites” during detec-
tion. In the forward pass of a sample, Dr. DNA will leverage the
activation values from those detection sites to calculate detection
metrics. Based on the three metrics, we can define an “abnormality
score” to quantitatively describe how the SDC signature, i.e., DNA
of a given inference are abnormal from the previously profiled
SDC-free DNA (details in [21]).

3.3 Online Detection and Mitigation
3.3.1 Early Detection of SDC. During detection, if the cumula-
tive abnormality score of a sample is considerably higher than
the profiled scores, i.e., the margin is higher than a threshold, Dr.
DNA will terminate the inference earlier and indicate the detection
of errors. The threshold can be empirically configured, or through
experimental evaluations under the error injection.

3.3.2 Mitigation Methods. Activation Filtering (AF): A com-
monly used approach to mitigate the SDC is to clip outlier ac-
tivation values, which has been investigated to improve the fault
tolerance [5, 12]. By limiting the activation range, abnormally large
values can be filtered out. The implementation of AF is straight-
forward and has almost no overhead other than modifying the
activation function. DNA-Guided Activation Filtering (D-AF):
InDr. DNA, activation clipping [4] can be guided using the profiled
DNA statistics, where the clipping threshold of an activation for
filtering in Dr. DNA are automatically determined from DNA. Ac-
tivation Re-distribution (AR): We also propose a finer-grained
mitigation method based on Dr. DNA, referred to as activation re-
distribution (AR). When SDC is detected, the abnormal activation
value would be replaced by a randomly sampled activation based
on the histograms.

3.4 Experimental Results

Table 1: Comparison between Dr. DNA and baselines [21].

Detection Rate FP Margin

Activation (Cosine Sim.) 0.2 0.39 2.3%
Activation (EMD) 0.16 0.38 1.6%

Min/Max 0.73 0.07 7.7%
Dr. DNA ✓ 0.03 10.6%

Mitigation Efficacy Memory Latency

Redundancy Excellent up to 300% Trivial
Re-execution Unusable Trivial High

AF Poor Trivial Trivial
Dr. DNA (D-AF) Good <0.5% <3%
Dr. DNA (AR) Good <0.5% <18%

Table 1 presents the results across 3 vision tasks, 5 different
datasets, and 10 different models, under 4 different error models.
We compare Dr. DNA with baseline detection methods: Activation
(Cosine Sim) [18, 23], Min/Max [4, 12], and Activation (EMD), a
simplified version of Dr. DNA without using individual detection
sites metric. Results show thatDr. DNA outperform all the baseline
methods with higher detection rate and lower false positives. We
compare Dr. DNA with baseline mitigation methods: Redundancy
based on triple modular redundancy (TMR), Re-execution [24], and
Activation Filtering [4, 8, 30]. Results show that D-AF can effectively
mitigate the impact of SDCs by recovering model performance with
small overhead, outperforming baseline methods.

4 Conclusion
This paper summarizes our recent works [15, 21] on tackling SDC
challenge in AI systems through novel evaluation metrics and miti-
gation methods. PVF is designed to quantify the vulnerability of
AI models to parameter corruptions. Through fault injection, PVF
can be calculated for any target parameter component of a given AI
model. Dr. DNA formulates and leverages the unique SDC signa-
tures derived from the Distribution of Neuron Activations (DNA) to
effectively detects and mitigates SDCs early during DNN inference.
We hope that our studies will inspire further research in academia
and industry to address the critical issue of SDCs in AI systems.
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