
LLM Inference Performance on Chiplet-based
Architectures and Systems

Surim Oh1
soh31@ucsc.edu
UC Santa Cruz

Santa Cruz, CA, USA

Eric Qin
ecqin@meta.com

Meta
Sunnvale, CA, USA

Yang Yang
yyn@meta.com

Meta
Sunnvale, CA, USA

Mengchi Zhang
mengchi@meta.com

Meta
Menlo Park, CA, USA

Raj Parihar
parihar@meta.com

Meta
Sunnvale, CA, USA

Ashish Pandya
ashishpandya@meta.com

Meta
Sunnvale, CA, USA

Abstract
Large Language Models (LLMs) have become increasingly
prevalent, enabling a wide range of tasks across various plat-
forms, from handheld devices and wearables to large-scale
datacenters. Many of these applications, such as co-pilot
and chatbot, rely on decoder-only style LLMs with multi-
billion parameters, which require significant computational
resources to achieve desired performance metrics. As LLM
workloads continue to evolve and demand more substantial
computational resources, it is essential to explore innovative
approaches to improve their performance.

One promising approach is theMulti-Chip-Module (MCM)
architecture, which offers high-performance computing, stor-
age, and network capabilities. However, the performance
characteristics of LLMs on MCM architectures are not yet
fully understood. To address this knowledge gap, we con-
ducted a series of carefully designed experiments to investi-
gate LLM inference performance on various MCM architec-
tures. Our study provides detailed sensitivity analyses of die-
to-die bandwidth, cache policies, and chiplet configurations,
offering valuable insights into optimizing LLM performance
on MCM architectures.
Keywords – LLM, Chiplet, Multi-Chip-Module (MCM),

GPUs, Prefill, Decode

1 Introduction
Increased deployment of LLMs has led to an unprecedented
demand for compute and memory bandwidth at all levels.
Legacy systems were not designed to handle the massive
computational requirements of trillion-parameter models,
and system designers are now facing the challenge of find-
ing novel solutions to overcome the “memory wall” problem
for LLMs. Recent advancements in data center accelerators
have led to the integration of multiple dies (chiplets2) into
a single package, enabling the maintenance of performance
1Work done as an intern at Meta.

The 2nd Workshop on Hot Topics in System Infrastructure (HotInfra’24), co-
located with SOSP’24, November 3, 2024, Austin, TX, USA

scaling [2, 8, 10, 15]. The NVIDIA Blackwell [4] and d-Matrix
Corsair [5] architecture exemplifies this trend by merging
multiple dies into a single unified GPU, thereby incorporat-
ing a substantial amount of computing power. The NVIDIA
DGX B200, configured with eight Blackwell GPUs where two
dies are merged into each single GPU, delivers unparalleled
generative AI performance.
One of the apparent advantages of a chiplet-based ap-

proach is its ability to improve yield issues when chips ap-
proach the reticle limit. However, we have observed that
chiplet-based computing, connected with die-to-die inter-
faces, can also enable more efficient sharing of data, thereby
reducing off-chip memory bandwidth requirements or even
eliminating them altogether. Our objective is to investigate
the impact of the die-to-die interface (bandwidth, latency,
and/or power) on LLM inference use cases for various MCM
architectures.

2 Background
2.1 Large Language Model (LLM) Inference
Today’s LLM [17] is trained on vast datasets and consists of
multiple layers, including embedding, attention and feed for-
ward layers. In this work, we focus on Decoder-only Trans-
former models [14] which are adopted by most of the LLMs
today such as LLaMA [9] and GPTs [3]. Parallelizing LLM
inference across multiple devices can be beneficial due to the
high volume of compute and memory operations involved.
In the process of LLM inference, there are two primary

phases. During the prefill phase, the LLM processes the input
tokens to generate the context for subsequent token gener-
ation. The prefill latency being measured as the Time To
First Token [1] (TTFT) where it is usually bounded by com-
pute. Subsequently, the output tokens are generated auto-
regressively one at a time during the decode phase. The Time
Per Output Token [1] (TPOT) serving as a measure of the
decode latency is usually bounded by memory – reading
parameters, Key and Value (KV) cache.

2In this paper, chiplet and multi-chip-module are used interchangeably.



2.2 Multi-Chip-Module (MCM) Architecture
MCM Architectures [2] are gaining traction due to reticle
limit of dies, costs, and yield. Recent advancement in silicon
interposers allow high bandwdith communication between
chiplets [11] to minimize performance loss from on-chip
wires to package-level wires. MI300A APU has a mix of
three CCD (CPU) and six XCD (GPU) chiplets on top of
four I/O Dies (IODs). Between the IODs are two N/S links of
3.0 TB/s/direction and two E/W links of 2.4 TB/s/direction.
NVIDIA B200 GPU has two I/O dies connected by a link of
5TB/s/direction [13] as shown in Figure 1. Recent studies
have shown that enabling reuse across chiplets can help
mitigate these effects[10].

Figure 1. Simulated system: B200 x 8

2.2.1 LLC Caching Policies. Due to the large tensor sizes
in state-of-the-art LLMs, tensor data is distributed across
HBM stacks [3, 9]. To reduce memory access latency and
improve performance, Last-Level Cache (LLC) are utilized
in state-of-the-art MCM-based GPUs [12] to cache the data
from HBM. There are two commonly used caching policies:
memory-side caching and compute-side caching, as illus-
trated in Figure 2. With memory-side caching, the LLC only
caches data from the HBM attached to the same chiplet,
which we refer to in this paper as caching@local. In con-
trast, compute-side caching allows the LLC to cache data
from HBM attached to other chiplets as well, which we de-
note as caching@local+remote. While compute-side caching
can reduce inter-chiplet traffic for operations with high LLC
data reuse, it also introduces increased complexity due to
the need for cache coherence. In this paper, we evaluate the
performance impact of these two caching policies.

Figure 2. Caching policies on an MCM-based GPU

3 Experimental Setup
3.1 LLM models
We investigate three distinct LLM models, each with a vary-
ing number of model parameters. Table 1 provides a sum-
mary of the key characteristics of each model.
Feature Llama3-70b [9] GPT3-175b [3] Llama3-400b [9]
#Params 70 billions 175 billions 400 billions
#Layers 80 96 126
#Heads 64 96 128
Dimension 8192 12288 16384

Table 1. Target LLM models.

3.2 Simulation Environment
To explore the performance of LLM inference workloads on
different MCM architectures, we leverage the open-source
hardware evaluation framework, LLMCompass [16]. We en-
hance LLMCompass by incorporating the MCM architec-
ture, implementing various caching policies across multiple
chiplets, and introducing different LLM models. Figure 1
shows the 8-device system we simulated, where all devices
are fully connected via NVLink5 in an all-to-all configura-
tion. To maximize device utilization, we employ eight-way
tensor parallelism. We then sweep the die-to-die bandwidth
to assess its effect on die-to-die communication. All experi-
mentation in this study utilized FP16 numerics.

4 Performance Analysis
The computational graph of a Transformer is comprised of a
stack of decoder layers which are composed of a sequence
of operators, including matrix multiplication (Matmul), Soft-
max, layer normalization (LayerNorm), and activation func-
tion (GELU [3, 7]). We investigate the impact of die-to-die
bandwidth on the key operators for three different LLMmod-
els, different MCM architectures, and LLC caching policies.
For this performance analysis, we use the batch size of 32
and the input sequence length of 8192.

4.1 Die-to-Die Impact on LLM Models

2 4 6
Die-to-die bandwidth (TB/s)

250

500

750

1000

1250

TT
FT

 (m
s)

2 4 6
Die-to-die bandwidth (TB/s)

2

3

4

5

6

TP
OT

 (m
s)

Llama3-70b
GPT3-175b
Llama3-400b

Figure 3. Latency of 70b/175b/400b LLMs on an 8-devices
2-chiplets B200 systemwith a sweep of die-to-die bandwidth.

Figure 3 shows the prefill and decode latency of three LLM
models. Larger models have longer latency, but the speed
ratio does not match the parameter count ratio. Specifically,
Llama3-400b’s prefill latency is ∼2.5x that of Llama3-70b,
while its decode latency is ∼1.6x. Low die-to-die bandwidth

2



negatively impacts latency for all models. As bandwidth in-
creases, latency decreases and eventually plateaus at around
4 TB/s. However, larger models require slightly more band-
width to achieve saturation.

4.2 Die-to-die Impact on Operators

1 2 3 4 5 6 7
Die-to-die bandwidth (TB/s)

0

250

500

750

1000

1250

TT
FT

 (m
s)

1 2 3 4 5 6 7
Die-to-die bandwidth (TB/s)

0

2

4

6
TP

OT
 (m

s)
AllReduce_FFN
AllReduce_MHA
GeLU
LayerNorm_FFN
LayerNorm_MHA
Softmax
W2_proj
W1_proj
Wo_proj
A_mul_V
Q_mul_K
Q_K_V

Figure 4. Latency breakdown on 2-chiplets system for
Llama3-400b.

Figure 4 shows prefill and decode latency on a two-chiplets
system across die-to-die bandwidth. The performance gain
begins to saturate at 4 TB/s, when the bidirectional die-
to-die bandwidth matches the HBM bandwidth of 8 TB/s.
Increasing die-to-die bandwidth from 1 TB/s to 2 TB/s re-
sults in a ∼1.2x speedup for decode latency, but further in-
creases have diminishing performance improvement. With
caching@local+remote, fusion, and KV cache for reuse across
operators, there is little die-to-die traffic. Matrix multiplica-
tion is highly sensitive to die-to-die bandwidth due to the
substantial amount of tensor reads and writes required from
the last level cache (LLC) or high-bandwidth memory (HBM).
During the prefill phase, all operators except AllReduce ex-
hibit decreasing latency as die-to-die bandwidth increases.
AllReduce is a collective communication operation that takes
place across multiple devices.

We examine how different MCM architectures affect LLM
inference, keeping the peak PFLOPS of a single device and
per-device HBM bandwidth constant. Figure 5 illustrates the
impact of die-to-die bandwidth on various MCM designs:
8, 4, 2-chiplet, and 1 chiplet, all with a peak throughput of
2250 TFLOPS. The 2-chiplet design mirrors NVIDIA’s B200
architecture, while the 8-chiplet and 4-chiplet designs use a
ring topology for die-to-die transfer, where each chiplet has
two neighbors for communication.
One chiplet (monolithic) does not have any die-to-die

links, and is the baseline. Figure 5 shows that increasing die-
to-die bandwidth will converge to monolithic performance
for both prefill and decode stages. The performance scales
with increasing die-to-die bandwidth until the bidirectional
die-to-die bandwidth reaches the HBM bandwidth. At this
point, the HBM bandwidth becomes a bottleneck and further
increases in die-to-die bandwidth do not result in improved
performance. The performance degradation for a die-to-die
bandwidth of 1 TB/s is greater for two chiplets than for eight
chiplets, because the total die-to-die bandwidth is higher in
the latter case.

0 5 10 15 20 25

1000

1100

1200

1300

1400

TT
FT

 (m
s)

8-chiplet with Caching@local
4-chiplet with Caching@local
2-chiplet with Caching@local
8-chiplet with Caching@local+remote
4-chiplet with Caching@local+remote
2-chiplet with Caching@local+remote
1-chiplet
Roofline of 8-chiplet
Roofline of 4-chiplet
Roofline of 2-chiplet
Roofline of 1-chiplet

1.0 1.5 2.0 2.5 3.0
1100

1150

1200

1250

0 5 10 15 20 25
Die-to-die bandwidth (TB/s)

3.5

4.0

4.5

5.0

5.5

6.0

TP
OT

 (m
s)

1 2 3 4 5 6 7

4.7

4.8

4.9

Figure 5. Latency w/ MCMs and caching policies (Llama-
400b). The total die-to-die bandwidth is 8/4 times higher
for 8/4-chiplet devices compared to 2-chiplet devices. For
example, a 4-chiplet device has a total bandwidth of 20 TB/s
(from two N/S and two E/W) when the die-to-die bandwidth
is 5 TB/s, while an 8-chiplet device has a total bandwidth of
40 TB/s (from six N/S and two E/W).

4.3 LLC Caching Policies
The caching@local+remote policy exhibits a lower latency
than that of the caching@local policy, owing to the optimal
reuse of data from local LLC. Even without introducing more
chiplets, the caching@local+remote policy achieves lower
decode latency. For example, TPOT of 2-chiplet/4-chiplet
with caching@local+remote is lower than that of 4-chiplet/8-
chiplet with caching@local respectively even with a large
die-to-die bandwidth. In the case of caching@local, half of the
data required for a reuse must always come from a remote
chiplet, where die-to-die bandwidth becomes a bottleneck.

5 Conclusion and Future Work
We assessed various MCM design alternatives, encompass-
ing number of chiplets within a device, die-to-die bandwidth,
and LLC caching methodologies. Our performance projec-
tions yield several findings. Firstly, the broader die-to-die
bandwidth facilitates the transfer of substantial data volumes
between chiplets. The incorporation of more chiplets within
a single device results in an augmented cumulative die-to-die
bandwidth, which in turn enhances the overall throughput.
Lastly, caching at both local and remote chiplets increases
data reuse on local and reduces die-to-die traffics and the
need for additional chiplets. We leave exploring different in-
terconnect topologies across chiplets, capacity-related mod-
eling, FlashAttention [6] optimizations, and quantization
(FP8, etc.) as future work to better understand their impact.

3



References
[1] AmeyAgrawal, Anmol Agarwal, Nitin Kedia, JayashreeMohan, Souvik

Kundu, Nipun Kwatra, Ramachandran Ramjee, and Alexey Tumanov.
2024. Metron: Holistic Performance Evaluation Framework for LLM
Inference Systems. arXiv preprint arXiv:2407.07000 (2024).

[2] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic,
Eiman Ebrahimi, Oreste Villa, Aamer Jaleel, Carole-JeanWu, andDavid
Nellans. 2017. MCM-GPU: Multi-Chip-Module GPUs for Continued
Performance Scalability. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA’24) (Toronto, ON, Canada)
(ISCA ’17). Association for Computing Machinery, New York, NY, USA,
320–332. https://doi.org/10.1145/3079856.3080231

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran
Associates, Inc., 1877–1901. https://proceedings.neurips.cc/paper_
files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[4] NVIDIA Corporation. 2024. NVIDIA Blackwell Architecture Technical
Brief. Retrieved August 20, 2024 from https://resources.nvidia.com/en-
us-blackwell-architecture

[5] d Matrix. 2023. d-Matrix TCO White Paper. Retrieved August 22, 2024
from https://www.d-matrix.ai/wp-content/uploads/2023/10/d-Matrix-
WhitePaper.pdf

[6] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. Flashattention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Processing Systems 35
(2022), 16344–16359.

[7] Dan Hendrycks and Kevin Gimpel. 2023. Gaussian Error Linear Units
(GELUs). arXiv:1606.08415 [cs.LG] https://arxiv.org/abs/1606.08415

[8] Mahmoud Khairy, Vadim Nikiforov, David Nellans, and Timothy G.
Rogers. 2020. Locality-Centric Data and Threadblock Management for
Massive GPUs. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’20). 1022–1036. https://doi.org/10.1109/
MICRO50266.2020.00086

[9] AI @ Meta Llama Team. 2024. The Llama 3 Herd of Mod-
els. Retrieved August 26, 2024 from https://scontent-sjc3-
1.xx.fbcdn.net/v/t39.2365-6/453304228_1160109801904614_
7143520450792086005_n.pdf?_nc_cat=108&ccb=1-7&_nc_
sid=3c67a6&_nc_ohc=Ckhh9hWw6wAQ7kNvgHEQ6vK&
_nc_ht=scontent-sjc3-1.xx&oh=00_AYA9-lha48rvvpSyV-
lxCOcd4_8FJMLQJ4cuRDq6MhRDDg&oe=66CD9E47

[10] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian
Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang,
William J. Dally, Joel Emer, C. Thomas Gray, Brucek Khailany, and
Stephen W. Keckler. 2019. Simba: Scaling Deep-Learning Inference
with Multi-Chip-Module-Based Architecture. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’19) (Columbus, OH, USA) (MICRO’19). Association for Com-
puting Machinery, New York, NY, USA, 14–27. https://doi.org/10.
1145/3352460.3358302

[11] Alan Smith, Eric Chapman, Chintan Patel, Raja Swaminathan, John
Wuu, Tyrone Huang, Wonjun Jung, Alexander Kaganov, Hugh McIn-
tyre, and Ramon Mangaser. 2024. 11.1 AMD InstinctTM MI300 Series
Modular Chiplet Package–HPC and AI Accelerator for Exa-Class Sys-
tems. In 2024 IEEE International Solid-State Circuits Conference (ISSCC),
Vol. 67. IEEE, 490–492.

[12] Alan Smith, Gabriel H Loh, Michael J Schulte, Mike Ignatowski, Samuel
Naffziger, Mike Mantor, Mark Fowler Nathan Kalyanasundharam,
Vamsi Alla, Nicholas Malaya, Joseph L Greathouse, et al. 2024. Real-
izing the AMD Exascale Heterogeneous Processor Vision: Industry
Product. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). IEEE, 876–889.

[13] Ryan Smith. 2024. NVIDIA Blackwell Architecture and B200/B100 Accel-
erators Announced: Going Bigger With Smaller Data. Retrieved Sep-
tember 1, 2024 from https://www.anandtech.com/show/21310/nvidia-
blackwell-architecture-and-b200b100-accelerators-announced-
going-bigger-with-smaller-data

[14] Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao,
Hyung Won Chung, Iz Beltagy, Julien Launay, and Colin Raffel. 2022.
What language model architecture and pretraining objective works
best for zero-shot generalization?. In International Conference on Ma-
chine Learning. PMLR, 22964–22984.

[15] Jieming Yin, Zhifeng Lin, Onur Kayiran, Matthew Poremba, Muham-
mad Shoaib Bin Altaf, Natalie Enright Jerger, and Gabriel H. Loh.
2018. Modular Routing Design for Chiplet-Based Systems. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA’18). 726–738. https://doi.org/10.1109/ISCA.2018.00066

[16] Hengrui Zhang, August Ning, Rohan Baskar Prabhakar, and David
Wentzlaff. 2024. LLMCompass: Enabling Efficient Hardware Design
for Large Language Model Inference. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA’17). 1080–
1096. https://doi.org/10.1109/ISCA59077.2024.00082

[17] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang,
Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican
Dong, et al. 2023. A survey of large language models. arXiv preprint
arXiv:2303.18223 (2023).

4

https://doi.org/10.1145/3079856.3080231
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture
https://www.d-matrix.ai/wp-content/uploads/2023/10/d-Matrix-WhitePaper.pdf
https://www.d-matrix.ai/wp-content/uploads/2023/10/d-Matrix-WhitePaper.pdf
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1109/MICRO50266.2020.00086
https://doi.org/10.1109/MICRO50266.2020.00086
https://scontent-sjc3-1.xx.fbcdn.net/v/t39.2365-6/453304228_1160109801904614_7143520450792086005_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Ckhh9hWw6wAQ7kNvgHEQ6vK&_nc_ht=scontent-sjc3-1.xx&oh=00_AYA9-lha48rvvpSyV-lxCOcd4_8FJMLQJ4cuRDq6MhRDDg&oe=66CD9E47
https://scontent-sjc3-1.xx.fbcdn.net/v/t39.2365-6/453304228_1160109801904614_7143520450792086005_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Ckhh9hWw6wAQ7kNvgHEQ6vK&_nc_ht=scontent-sjc3-1.xx&oh=00_AYA9-lha48rvvpSyV-lxCOcd4_8FJMLQJ4cuRDq6MhRDDg&oe=66CD9E47
https://scontent-sjc3-1.xx.fbcdn.net/v/t39.2365-6/453304228_1160109801904614_7143520450792086005_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Ckhh9hWw6wAQ7kNvgHEQ6vK&_nc_ht=scontent-sjc3-1.xx&oh=00_AYA9-lha48rvvpSyV-lxCOcd4_8FJMLQJ4cuRDq6MhRDDg&oe=66CD9E47
https://scontent-sjc3-1.xx.fbcdn.net/v/t39.2365-6/453304228_1160109801904614_7143520450792086005_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Ckhh9hWw6wAQ7kNvgHEQ6vK&_nc_ht=scontent-sjc3-1.xx&oh=00_AYA9-lha48rvvpSyV-lxCOcd4_8FJMLQJ4cuRDq6MhRDDg&oe=66CD9E47
https://scontent-sjc3-1.xx.fbcdn.net/v/t39.2365-6/453304228_1160109801904614_7143520450792086005_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Ckhh9hWw6wAQ7kNvgHEQ6vK&_nc_ht=scontent-sjc3-1.xx&oh=00_AYA9-lha48rvvpSyV-lxCOcd4_8FJMLQJ4cuRDq6MhRDDg&oe=66CD9E47
https://scontent-sjc3-1.xx.fbcdn.net/v/t39.2365-6/453304228_1160109801904614_7143520450792086005_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=Ckhh9hWw6wAQ7kNvgHEQ6vK&_nc_ht=scontent-sjc3-1.xx&oh=00_AYA9-lha48rvvpSyV-lxCOcd4_8FJMLQJ4cuRDq6MhRDDg&oe=66CD9E47
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/3352460.3358302
https://www.anandtech.com/show/21310/nvidia-blackwell-architecture-and-b200b100-accelerators-announced-going-bigger-with-smaller-data
https://www.anandtech.com/show/21310/nvidia-blackwell-architecture-and-b200b100-accelerators-announced-going-bigger-with-smaller-data
https://www.anandtech.com/show/21310/nvidia-blackwell-architecture-and-b200b100-accelerators-announced-going-bigger-with-smaller-data
https://doi.org/10.1109/ISCA.2018.00066
https://doi.org/10.1109/ISCA59077.2024.00082

	Abstract
	1 Introduction
	2 Background
	2.1 Large Language Model (LLM) Inference
	2.2 Multi-Chip-Module (MCM) Architecture

	3 Experimental Setup
	3.1 LLM models
	3.2 Simulation Environment

	4 Performance Analysis
	4.1 Die-to-Die Impact on LLM Models
	4.2 Die-to-die Impact on Operators
	4.3 LLC Caching Policies

	5 Conclusion and Future Work
	References

